dc.contributor.author
Hidalgo, Juanita
dc.contributor.author
An, Yu
dc.contributor.author
Yehorova, Dariia
dc.contributor.author
Li, Ruipeng
dc.contributor.author
Breternitz, Joachim
dc.contributor.author
Perini, Carlo A. R.
dc.contributor.author
Hoell, Armin
dc.contributor.author
Boix, Pablo P.
dc.contributor.author
Schorr, Susan
dc.contributor.author
Kretchmer, Joshua S.
dc.date.accessioned
2023-07-17T12:51:23Z
dc.date.available
2023-07-17T12:51:23Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40116
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39838
dc.description.abstract
Preferred crystallographic orientation in polycrystalline films is desirable for efficient charge carrier transport in metal halide perovskites and semiconductors. However, the mechanisms that determine the preferred orientation of halide perovskites are still not well understood. In this work, we investigate crystallographic orientation in lead bromide perovskites. We show that the solvent of the precursor solution and organic A-site cation strongly affect the preferred orientation of the deposited perovskite thin films. Specifically, we show that the solvent, dimethylsulfoxide, influences the early stages of crystallization and induces preferred orientation in the deposited films by preventing colloidal particle interactions. Additionally, the methylammonium A-site cation induces a higher degree of preferred orientation than the formamidinium counterpart. We use density functional theory to show that the lower surface energy of the (100) plane facets in methylammonium-based perovskites, compared to the (110) planes, is the reason for the higher degree of preferred orientation. In contrast, the surface energy of the (100) and (110) facets is similar for formamidinium-based perovskites, leading to lower degree of preferred orientation. Furthermore, we show that different A-site cations do not significantly affect ion diffusion in bromine-based perovskite solar cells but impact ion density and accumulation, leading to increased hysteresis. Our work highlights the interplay between the solvent and organic A-site cation which determine crystallographic orientation and plays a critical role in the electronic properties and ionic migration of solar cells.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Crystallography
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Solvent and A-Site Cation Control Preferred Crystallographic Orientation in Bromine-Based Perovskite Thin Films
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.chemmater.3c00075
dcterms.bibliographicCitation.journaltitle
Chemistry of Materials
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.pagestart
4181
dcterms.bibliographicCitation.pageend
4191
dcterms.bibliographicCitation.volume
35
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.chemmater.3c00075
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-5002
refubium.resourceType.provider
WoS-Alert