dc.contributor.author
MacKenzie, Jasmine
dc.contributor.author
Grenfell, John Lee
dc.contributor.author
Baumeister, Philipp
dc.contributor.author
Tosi, Nicola
dc.contributor.author
Cabrera, Juan
dc.contributor.author
Rauer, Heike
dc.date.accessioned
2023-07-07T11:49:48Z
dc.date.available
2023-07-07T11:49:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/40001
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39723
dc.description.abstract
Aims. We investigate the impact of updated atmospheric mean opacity input values on modelled transit radius and the distribution of interior layer mass fractions.
Methods. We developed and applied a coupled interior-atmosphere model. Our straightforward semi-grey calculation of atmospheric temperature enables us to perform thousands of model realisations in a Monte Carlo approach to address potential degeneracies in interior and atmospheric mass fraction. Our main constraints are planetary mass and radius from which our model infers distributions of the internal structure of exoplanetary classes ranging from Super-Earth to Mini-Neptune. We varied the relative masses of gas, envelope, mantle, and core layers subject to constraints on the bulk density from observations, and investigated the effect of updating atmospheric mean opacities.
Results. First, we validate our model output with observed temperature profiles for modern Neptune. We can reproduce the basic features in the middle atmosphere but not the temperature inversion in the upper layers, which is likely because our model lacks aerosol heating. Calculated interiors are generally consistent with modern Neptune. Second, we compare with the well-studied object GJ 1214 b and obtain results that are broadly consistent with previous findings; they suggest correlations between modelled gas, water, and core mass fractions, although these are generally weak. Updating the opacities leads to a change on the order of a few percent in the modelled transit radius. This is comparable in magnitude to the planned accuracy of the PLATO data for planetary radius, suggesting that the opacity update in the model is important to implement.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
planets and satellites: individual: GJ 1214 b
en
dc.subject
planets and satellites: atmospheres
en
dc.subject
planets and satellites: composition
en
dc.subject
planets and satellites: fundamental parameters
en
dc.subject
planets and satellites: interiors
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Effect of improved atmospheric opacities in modelling sub-Neptunes
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
A65
dcterms.bibliographicCitation.doi
10.1051/0004-6361/202141784
dcterms.bibliographicCitation.journaltitle
Astronomy & Astrophysics
dcterms.bibliographicCitation.volume
671
dcterms.bibliographicCitation.url
https://doi.org/10.1051/0004-6361/202141784
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0746
refubium.resourceType.provider
WoS-Alert