dc.contributor.author
Elser, Michael J.
dc.contributor.author
Neige, Ellie
dc.contributor.author
Berger, Thomas
dc.contributor.author
Chiesa, Mario
dc.contributor.author
Giamello, Elio
dc.contributor.author
McKenna, Keith
dc.contributor.author
Risse, Thomas
dc.contributor.author
Diwald, Oliver
dc.date.accessioned
2023-06-08T07:45:37Z
dc.date.available
2023-06-08T07:45:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39762
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39480
dc.description.abstract
Particle attachment and neck formation inside TiO2 nanoparticle networks determine materials performance in sensing, photo-electrochemistry, and catalysis. Nanoparticle necks can feature point defects with potential impact on the separation and recombination of photogenerated charges. Here, we investigated with electron paramagnetic resonance a point defect that traps electrons and predominantly forms in aggregated TiO2 nanoparticle systems. The associated paramagnetic center resonates in the g factor range between g = 2.0018 and 2.0028. Structure characterization and electron paramagnetic resonance data suggest that during materials processing, the paramagnetic electron center accumulates in the region of nanoparticle necks, where O2 adsorption and condensation can occur at cryogenic temperatures. Complementary density functional theory calculations reveal that residual carbon atoms, which potentially originate from synthesis, can substitute oxygen ions in the anionic sublattice, where they trap one or two electrons that mainly localize at the carbon. Their emergence upon particle neck formation is explained by the synthesis- and/or processing-induced particle attachment and aggregation facilitating carbon atom incorporation into the lattice. This study represents a substantial advance in linking dopants, point defects, and their spectroscopic fingerprints to microstructural features of oxide nanomaterials.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electron paramagnetic resonance spectroscopy
en
dc.subject
Nanoparticles
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
On the Importance of Nanoparticle Necks and Carbon Impurities for Charge Trapping in TiO2
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.jpcc.3c00430
dcterms.bibliographicCitation.journaltitle
The Journal of Physical Chemistry C
dcterms.bibliographicCitation.number
18
dcterms.bibliographicCitation.pagestart
8778
dcterms.bibliographicCitation.pageend
8787
dcterms.bibliographicCitation.volume
127
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.jpcc.3c00430
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1932-7455
refubium.resourceType.provider
WoS-Alert