dc.contributor.author
Gilic, Martina
dc.contributor.author
Ghobara, Mohamed
dc.contributor.author
Reissig, Louisa
dc.date.accessioned
2023-06-02T10:18:07Z
dc.date.available
2023-06-02T10:18:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39677
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39395
dc.description.abstract
The discovered light modulation capabilities of diatom silicious valves make them an excellent toolkit for photonic devices and applications. In this work, a reproducible surface-enhanced Raman scattering (SERS) enhancement was achieved with hybrid substrates employing diatom silica valves coated with an ultrathin uniform gold film. Three structurally different hybrid substrates, based on the valves of three dissimilar diatom species, have been compared to elucidate the structural contribution to SERS enhancement. The comparative analysis of obtained results showed that substrates containing cylindrical Aulacoseira sp. valves achieved the highest enhancement, up to 14-fold. Numerical analysis based on the frequency domain finite element method was carried out to supplement the experimental results. Our results demonstrate that diatom valves of different shapes can enhance the SERS signal, offering a toolbox for SERS-based sensors, where the magnitude of the enhancement depends on valve geometry and ultrastructure.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
diatom valve
en
dc.subject
surface-enhanced Raman scattering
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Tuning SERS Signal via Substrate Structuring: Valves of Different Diatom Species with Ultrathin Gold Coating
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
1594
dcterms.bibliographicCitation.doi
10.3390/nano13101594
dcterms.bibliographicCitation.journaltitle
Nanomaterials
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.3390/nano13101594
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2079-4991