dc.contributor.author
Kaatz, Lisa
dc.contributor.author
Schmalholz, S. M.
dc.contributor.author
John, Timm
dc.date.accessioned
2023-06-01T12:52:19Z
dc.date.available
2023-06-01T12:52:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39649
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39367
dc.description.abstract
Exposures on Holsnøy island (Bergen Arcs, Norway) indicate fluid infiltration through fractures into a dry, metastable granulite, which triggered a kinetically delayed eclogitization, a transient weakening during fluid-rock interaction, and formation of shear zones that widened during shearing. It remains unclear whether the effects of grain boundary-assisted aqueous fluid inflow on the duration of granulite hydration were influenced by a diffusional hydrogen influx accompanying the fluid inflow. To better estimate the fluid infiltration efficiencies and the parameter interdependencies, a 1D numerical model of a viscous shear zone is utilized and validated using measured mineral phase abundance distributions and H2O-contents in nominally anhydrous minerals of the original granulite assemblage to constrain the hydration by aqueous fluid inflow and diffusional hydrogen influx, respectively. Both hydrations are described with a diffusion equation and affect the effective viscosity. Shear zone kinematics are constrained by the observed shear strain and thickness. The model fits the phase abundance and H2O-content profiles if the effective hydrogen diffusivity is approximately one order of magnitude higher than the diffusivity for aqueous fluid inflow. The observed shear zone thickness is reproduced if the viscosity ratio between dry granulite and deforming, reequilibrating eclogite is ∼104 and that between dry granulite and hydrated granulite is ∼102. The results suggest shear velocities <10−2 cm/a, hydrogen diffusivities of ∼10−13±1 m2/s, and a shearing duration of <10 years. This study successfully links and validates field data to a shear zone model and highlights the importance of hydrogen diffusion for shear zone widening and eclogitization.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
transient weakening
en
dc.subject
dry granulite
en
dc.subject
hydrogen Influx
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Numerical Simulations Reproduce Field Observations Showing Transient Weakening During Shear Zone Formation by Diffusional Hydrogen Influx and H2O Inflow
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2022GC010830
dcterms.bibliographicCitation.doi
10.1029/2022GC010830
dcterms.bibliographicCitation.journaltitle
Geochemistry, Geophysics, Geosystems
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.volume
24
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2022GC010830
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1525-2027