dc.contributor.author
Mohammadi, Somayeh
dc.contributor.author
Pourkarimi, Latif
dc.contributor.author
Droop, Felix
dc.contributor.author
Mecquenem, Ninon de
dc.contributor.author
Leser, Ulf
dc.contributor.author
Reinert, Knut
dc.date.accessioned
2023-10-09T06:58:31Z
dc.date.available
2023-10-09T06:58:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39634
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39352
dc.description.abstract
Scientific communities are motivated to schedule their large-scale data analysis workflows in heterogeneous cluster environments because of privacy and financial issues. In such environments containing considerably diverse resources, efficient resource allocation approaches are essential for reaching high performance. Accordingly, this research addresses the scheduling problem of workflows with bag-of-task form to minimize total runtime (makespan). To this aim, we develop a mixed-integer linear programming model (MILP). The proposed model contains binary decision variables determining which tasks should be assigned to which nodes. Also, it contains linear constraints to fulfill the tasks requirements such as memory and scheduling policy. Comparative results show that our approach outperforms related approaches in most cases. As part of the post-optimality analysis, some secondary preferences are imposed on the proposed model to obtain the most preferred optimal solution. We analyze the relaxation of the makespan in the hope of significantly reducing the number of consumed nodes.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Heterogeneous cluster environments
en
dc.subject
Data analysis workflow
en
dc.subject
Mixed integer linear programming
en
dc.subject
Makespan minimization
en
dc.subject
Post-optimality analysis
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
A mathematical programming approach for resource allocation of data analysis workflows on heterogeneous clusters
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s11227-023-05325-w
dcterms.bibliographicCitation.journaltitle
The Journal of Supercomputing
dcterms.bibliographicCitation.number
17
dcterms.bibliographicCitation.pagestart
19019
dcterms.bibliographicCitation.pageend
19048
dcterms.bibliographicCitation.volume
79
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s11227-023-05325-w
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1573-0484