dc.contributor.author
Nill, Florian
dc.date.accessioned
2023-05-30T13:45:46Z
dc.date.available
2023-05-30T13:45:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39609
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39327
dc.description.abstract
The dynamics of fractional population sizes 𝑦𝑖=𝑌𝑖/𝑁 in homogeneous compartment models with time-dependent total population N is analyzed. Assuming constant per capita birth and death rates, the vector field 𝑌˙𝑖=𝑉𝑖(𝑌) naturally projects to a vector field 𝐹𝑖(𝑌) tangent to the leaves of constant population N. A universal formula for the projected field 𝐹𝑖 is given. In this way, in many SIR-type models with standard incidence, all demographic parameters become redundant for the dynamical system 𝑦˙𝑖=𝐹𝑖(𝑦). They may be put to zero by shifting the remaining parameters appropriately. Normalizing eight examples from the literature this way, they unexpectedly become isomorphic for corresponding parameter ranges. Thus, some recently published results turn out to have been covered already by papers 20 years ago.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
demographic parameters
en
dc.subject
birth and death rates
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
On the Redundancy of Birth and Death Rates in Homogeneous Epidemic SIR Models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
313
dcterms.bibliographicCitation.doi
10.3390/fractalfract7040313
dcterms.bibliographicCitation.journaltitle
Fractal and Fractional
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.3390/fractalfract7040313
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2504-3110