dc.contributor.author
Grinter, Rhys
dc.contributor.author
Kropp, Ashleigh
dc.contributor.author
Venugopal, Hari
dc.contributor.author
Senger, Moritz
dc.contributor.author
Badley, Jack
dc.contributor.author
Cabotaje, Princess R. R.
dc.contributor.author
Jia, Ruyu
dc.contributor.author
Duan, Zehui
dc.contributor.author
Huang, Ping
dc.contributor.author
Stripp, Sven T. T.
dc.date.accessioned
2023-05-25T09:19:56Z
dc.date.available
2023-05-25T09:19:56Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39563
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39281
dc.description.abstract
Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe–4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Bacteriology
en
dc.subject
Cryoelectron microscopy
en
dc.subject
Enzyme mechanisms
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Structural basis for bacterial energy extraction from atmospheric hydrogen
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1038/s41586-023-05781-7
dcterms.bibliographicCitation.journaltitle
Nature
dcterms.bibliographicCitation.number
7952
dcterms.bibliographicCitation.pagestart
541
dcterms.bibliographicCitation.pageend
547
dcterms.bibliographicCitation.volume
615
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41586-023-05781-7
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1476-4687
refubium.resourceType.provider
WoS-Alert