dc.contributor.author
Rouzegar, Reza
dc.contributor.author
Chekhov, Alexander L.
dc.contributor.author
Behovits, Yannic
dc.contributor.author
Serrano, Bruno Rosinus
dc.contributor.author
Syskaki, M. A.
dc.contributor.author
Lambert, C. H.
dc.contributor.author
Engel, D.
dc.contributor.author
Martens, U.
dc.contributor.author
Seifert, Tom S.
dc.contributor.author
Kampfrath, Tobias
dc.date.accessioned
2023-05-25T09:08:43Z
dc.date.available
2023-05-25T09:08:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39562
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39280
dc.description.abstract
In this work, we improve the performance of an optically pumped spintronic terahertz emitter (STE) by a factor of up to 6 in field amplitude through an optimized photonic and thermal environment. Using high-energy pump pulses (energy 5 mJ, fluence >1 mJ/cm2, wavelength 800 nm, duration 80 fs), we routinely generate terahertz pulses with focal peak electric fields above 1.5 MV/cm, fluences of the order of 1 mJ/cm2, and a spectrum covering the range 0.1–11 THz. Remarkably, the field and fluence values are comparable to those obtained from a state-of-the-art terahertz table-top high-field source based on tilted-pulse-front optical rectification in LiNbO3. The optimized STE inherits all attractive features of the standard STE design, for example, ease of use and the straightforward rotation of the terahertz polarization plane, without the typical 75% power loss found in LiNbO3 setups. It, thus, opens up a promising pathway to nonlinear terahertz spectroscopy. Using low-energy laser pulses (2 nJ, 0.2 mJ/cm2, 800 nm, 10 fs), the emitted terahertz pulse has a focal peak electric field of 100 V/cm, which corresponds to a 2-fold improvement, and covers the spectrum 0.3–30 THz.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Ultrafast magnetic effects
en
dc.subject
Ultrafast optics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Broadband Spintronic Terahertz Source with Peak Electric Fields Exceeding 1.5 MV/cm
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
97227
dcterms.bibliographicCitation.articlenumber
034018
dcterms.bibliographicCitation.doi
10.1103/PhysRevApplied.19.034018
dcterms.bibliographicCitation.journaltitle
Physical Review Applied
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PhysRevApplied.19.034018
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2331-7019
refubium.resourceType.provider
WoS-Alert