dc.contributor.author
Pan, Xuefeng
dc.contributor.author
Kochovski, Zdravko
dc.contributor.author
Wang, Yong-Lei
dc.contributor.author
Sarhan, Radwan M.
dc.contributor.author
Härk, Eneli
dc.contributor.author
Gupta, Siddharth
dc.contributor.author
Stojkovikj, Sasho
dc.contributor.author
El-Nagar, Gumaa A.
dc.contributor.author
Mayer, Matthew T.
dc.contributor.author
Schürmann, Robin
dc.date.accessioned
2023-05-25T08:59:48Z
dc.date.available
2023-05-25T08:59:48Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39561
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39279
dc.description.abstract
Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs’ internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 ∼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Poly(ionic liquid)
en
dc.subject
Nanovesicles
en
dc.subject
Polymerization-induced self-assembly
en
dc.subject
Nanoparticles
en
dc.subject
CO2 electroreduction
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Poly(ionic liquid) nanovesicles via polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO2 electroreduction
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.jcis.2023.01.097
dcterms.bibliographicCitation.journaltitle
Journal of Colloid and Interface Science
dcterms.bibliographicCitation.pagestart
408
dcterms.bibliographicCitation.pageend
420
dcterms.bibliographicCitation.volume
637
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.jcis.2023.01.097
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1095-7103
refubium.resourceType.provider
WoS-Alert