dc.contributor.author
Schütte, Christof
dc.contributor.author
Klus, Stefan
dc.contributor.author
Hartmann, Carsten
dc.date.accessioned
2023-05-22T11:14:22Z
dc.date.available
2023-05-22T11:14:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39394
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39111
dc.description.abstract
One of the main challenges in molecular dynamics is overcoming the ‘timescale barrier’: in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behaviour on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory, as well as the algorithmic development, from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in molecular dynamics. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject.
en
dc.format.extent
157 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Time series analysis
en
dc.subject
Computational methods for ergodic theory
en
dc.subject
Stochastic methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Overcoming the timescale barrier in molecular dynamics: Transfer operators, variational principles and machine learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1017/S0962492923000016
dcterms.bibliographicCitation.journaltitle
Acta Numerica
dcterms.bibliographicCitation.pagestart
517
dcterms.bibliographicCitation.pageend
673
dcterms.bibliographicCitation.volume
32
dcterms.bibliographicCitation.url
https://doi.org/10.1017/S0962492923000016
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Open Access in Konsortiallizenz - Cambridge
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0962-4929
dcterms.isPartOf.eissn
1474-0508