dc.contributor.author
Fan, Xin
dc.contributor.author
Gao, Yang
dc.contributor.author
Yang, Fan
dc.contributor.author
Low, Jian Liang
dc.contributor.author
Wang, Lei
dc.contributor.author
Paulus, Beate
dc.contributor.author
Wang, Yi
dc.contributor.author
Trampuz, Andrej
dc.contributor.author
Cheng, Chong
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2023-08-28T07:18:34Z
dc.date.available
2023-08-28T07:18:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39378
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39095
dc.description.abstract
Diabetic ulcers induced by multidrug-resistant (MDR) bacteria have severely endangered diabetic populations. These ulcers are very challenging to treat because the local high glucose concentration can both promote bacterial growth and limit the immune system's bactericidal action. Herein, a glucose oxidase-peroxidase (GOx-POD) dual-enzyme mimetic (DEM) bionanocatalyst, Au@CuBCats is synthesized to simultaneously control glucose concentration and bacteria in diabetic ulcers. Specifically, the AuNPs can serve as GOx mimics and catalyze the oxidation of glucose for the formation of H2O2; the H2O2 can then be further catalytically converted into OH via the POD-mimetic copper single atoms. Notably, the unique copper single atoms coordinated by one oxygen and two nitrogen atoms (CuN2O1) exhibit better POD catalytic performance than natural peroxidase. Further DFT calculations are conducted to study the catalytic mechanism and reveal the advantage of this CuN2O1 structure as compared to other copper single-atom sites. Both in vitro and in vivo experiments confirm the outstanding antibacterial therapeutic efficacy of the DEM bionanocatalyst. This new bionanocatalyst will provide essential insights for the next generation of antibiotic-free strategies for combating MDR bacterial diabetic ulcers, and also offer inspiration for designing bionanocatalytic cascading medicines.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
cascade catalysis
en
dc.subject
copper single-atom catalysts
en
dc.subject
diabetic ulcers
en
dc.subject
enzyme-mimetic bionanocatalysts
en
dc.subject
multi-drug resistant bacteria
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
A Copper Single-Atom Cascade Bionanocatalyst for Treating Multidrug-Resistant Bacterial Diabetic Ulcer
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2301986
dcterms.bibliographicCitation.doi
10.1002/adfm.202301986
dcterms.bibliographicCitation.journaltitle
Advanced Functional Materials
dcterms.bibliographicCitation.number
33
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1002/adfm.202301986
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1616-3028