dc.contributor.author
Aubreville, Marc
dc.contributor.author
Bertram, Christof A.
dc.contributor.author
Donovan, Taryn A.
dc.contributor.author
Marzahl, Christian
dc.contributor.author
Maier, Andreas
dc.contributor.author
Klopfleisch, Robert
dc.date.accessioned
2023-05-22T07:45:54Z
dc.date.available
2023-05-22T07:45:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39371
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39088
dc.description.abstract
Canine mammary carcinoma (CMC) has been used as a model to investigate the pathogenesis of human breast cancer and the same grading scheme is commonly used to assess tumor malignancy in both. One key component of this grading scheme is the density of mitotic figures (MF). Current publicly available datasets on human breast cancer only provide annotations for small subsets of whole slide images (WSIs). We present a novel dataset of 21 WSIs of CMC completely annotated for MF. For this, a pathologist screened all WSIs for potential MF and structures with a similar appearance. A second expert blindly assigned labels, and for non-matching labels, a third expert assigned the final labels. Additionally, we used machine learning to identify previously undetected MF. Finally, we performed representation learning and two-dimensional projection to further increase the consistency of the annotations. Our dataset consists of 13,907 MF and 36,379 hard negatives. We achieved a mean F1-score of 0.791 on the test set and of up to 0.696 on a human breast cancer dataset.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Breast cancer
en
dc.subject
Image processing
en
dc.subject
Machine learning
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::630 Landwirtschaft::630 Landwirtschaft und verwandte Bereiche
dc.title
A completely annotated whole slide image dataset of canine breast cancer to aid human breast cancer research
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
417
dcterms.bibliographicCitation.doi
10.1038/s41597-020-00756-z
dcterms.bibliographicCitation.journaltitle
Scientific Data
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41597-020-00756-z
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Tierpathologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2052-4463
refubium.resourceType.provider
DeepGreen