dc.contributor.author
Khawaja, N.
dc.contributor.author
O’Sullivan, T. R.
dc.contributor.author
Klenner, F.
dc.contributor.author
Sanchez, L. H.
dc.contributor.author
Hillier, J.
dc.date.accessioned
2023-05-15T10:26:10Z
dc.date.available
2023-05-15T10:26:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39336
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-39054
dc.description.abstract
Results from the Cassini-Huygens space mission at Enceladus revealed a substantial inventory of organic species embedded in plume and E ring ice grains originating from a global subsurface and putative habitable ocean. Compositional analysis by the Cosmic Dust Analyzer indicated the presence of aromatic species and constrained some structural features, although their exact nature remains unclear. As indicated by many studies, among other organic species, low-mass aromatics likely played a role in the emergence of life on Earth and may be linked to potential prebiotic or biogenic chemistry on icy moons. Here, we study the behavior of single-ringed aromatic compounds—benzoic acid and two isomeric derivatives, 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid—using Laser-Induced Liquid Beam Ion Desorption (LILBID), an analogue setup to simulate the impact ionization mass spectra of ice grains in space. These compounds share common structural features but also exhibit differences in functional groups and substituent positions. We investigate the fragmentation behavior and spectral appearance of each molecule over three simulated impact velocities, in both positive and negative ion modes. Parent compounds can be distinguished easily from their derivatives due to various spectral differences, including the (de)protonated molecular ion peaks appearing at different m/z values. We conclude that distinction between structural isomers in LILBID is more challenging, but some insights can be revealed by considering intermolecular bonding regimes. This work will guide future investigations into elucidating the composition of isomeric biosignatures in ice grains, relevant for future space missions to Enceladus and Europa
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
mass spectrometry
en
dc.subject
LILBID and impact ionization
en
dc.subject
aromatics and isomeric derivatives
en
dc.subject
Enceladus and Europa
en
dc.subject
space missions
en
dc.subject
habitability
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Discriminating Aromatic Parent Compounds and Their Derivative Isomers in Ice Grains From Enceladus and Europa Using a Laboratory Analogue for Spaceborne Mass Spectrometers
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2022EA002807
dcterms.bibliographicCitation.doi
10.1029/2022EA002807
dcterms.bibliographicCitation.journaltitle
Earth and Space Science
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2022EA002807
refubium.affiliation
Geowissenschaften
refubium.funding
DEAL Wiley
refubium.funding.project
This work was supported by a European Research Council (ERC) Consolidator Grant 724908-Habitat OASIS
refubium.funding.projectId
724908-Habitat OASIS
refubium.isSupplementedBy.url
https://refubium.fu-berlin.de/handle/fub188/38242
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2333-5084