dc.contributor.author
Röhling, Hanna Marie
dc.contributor.author
Otte, Karen
dc.contributor.author
Rekers, Sophia
dc.contributor.author
Finke, Carsten
dc.contributor.author
Rust, Rebekka
dc.contributor.author
Dorsch, Eva-Maria
dc.contributor.author
Behnia, Behnoush
dc.contributor.author
Paul, Friedemann
dc.contributor.author
Schmitz-Hübsch, Tanja
dc.date.accessioned
2023-05-04T13:45:52Z
dc.date.available
2023-05-04T13:45:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39192
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38909
dc.description.abstract
Background: Instrumental motion analysis constitutes a promising development in the assessment of motor function in clinical populations affected by movement disorders. To foster implementation and facilitate interpretation of respective outcomes, we aimed to establish normative data of healthy subjects for a markerless RGB-Depth camera-based motion analysis system and to illustrate their use.
Methods: We recorded 133 healthy adults (56% female) aged 20 to 60 years with an RGB-Depth camera-based motion analysis system. Forty-three spatiotemporal parameters were extracted from six short, standardized motor tasks-including three gait tasks, stepping in place, standing-up and sitting down, and a postural control task. Associations with confounding factors, height, weight, age, and sex were modelled using a predictive linear regression approach. A z-score normalization approach was provided to improve usability of the data.
Results: We reported descriptive statistics for each spatiotemporal parameter (mean, standard deviation, coefficient of variation, quartiles). Robust confounding associations emerged for step length and step width in comfortable speed gait only. Accessible normative data usage was lastly exemplified with recordings from one randomly selected individual with multiple sclerosis.
Conclusion: We provided normative data for an RGB depth camera-based motion analysis system covering broad aspects of motor capacity.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
instrumental motion analysis
en
dc.subject
normative data
en
dc.subject
RGB-Depth camera
en
dc.subject
Microsoft Kinect v2
en
dc.subject
gait analysis
en
dc.subject
postural control
en
dc.subject
stepping in place
en
dc.subject
standing up and sitting down
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
RGB-Depth Camera-Based Assessment of Motor Capacity: Normative Data for Six Standardized Motor Tasks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
16989
dcterms.bibliographicCitation.doi
10.3390/ijerph192416989
dcterms.bibliographicCitation.journaltitle
International Journal of Environmental Research and Public Health
dcterms.bibliographicCitation.number
24
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
19
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
36554871
dcterms.isPartOf.eissn
1660-4601