dc.contributor.author
Mele, Antonio Anna
dc.contributor.author
Mbeng, Glen B.
dc.contributor.author
Santoro, Giuseppe E.
dc.contributor.author
Collura, Mario
dc.contributor.author
Torta, Pietro
dc.date.accessioned
2023-04-26T06:57:31Z
dc.date.available
2023-04-26T06:57:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39099
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38815
dc.description.abstract
A large ongoing research effort focuses on variational quantum algorithms (VQAs), representing leading candidates to achieve computational speed-ups on current quantum devices. The scalability of VQAs to a large number of qubits, beyond the simulation capabilities of classical computers, is still debated. Two major hurdles are the proliferation of low-quality variational local minima, and the exponential vanishing of gradients in the cost-function landscape, a phenomenon referred to as barren plateaus. In this work, we show that by employing iterative search schemes, one can effectively prepare the ground state of paradigmatic quantum many-body models, also circumventing the barren plateau phenomenon. This is accomplished by leveraging the transferability to larger system sizes of a class of iterative solutions, displaying an intrinsic smoothness of the variational parameters, a result that does not extend to other solutions found via random-start local optimization. Our scheme could be directly tested on near-term quantum devices, running a refinement optimization in a favorable local landscape with nonvanishing gradients.
en
dc.format.extent
14 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Adiabatic quantum optimization
en
dc.subject
Machine learning
en
dc.subject
Quantum algorithms
en
dc.subject
Quantum algorithms for chemical calculations
en
dc.subject
Quantum gates
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Avoiding barren plateaus via transferability of smooth solutions in a Hamiltonian variational ansatz
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
92963
dcterms.bibliographicCitation.articlenumber
L060401
dcterms.bibliographicCitation.doi
10.1103/PhysRevA.106.L060401
dcterms.bibliographicCitation.journaltitle
Physical Review A
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.originalpublishername
American Physical Society
dcterms.bibliographicCitation.originalpublisherplace
College Park, Md
dcterms.bibliographicCitation.volume
106
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevA.106.L060401
dcterms.rightsHolder.url
https://journals.aps.org/copyrightFAQ.html#eprint
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9926
dcterms.isPartOf.eissn
2469-9934