dc.contributor.author
Hasenöhrl, Markus
dc.contributor.author
Caro, Matthias C.
dc.date.accessioned
2023-04-26T07:05:36Z
dc.date.available
2023-04-26T07:05:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/39097
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38813
dc.description.abstract
Quantum devices are subject to natural decay. We propose to study these decay processes as the Markovian evolution of quantum channels, which leads us to dynamical semigroups of superchannels. A superchannel is a linear map that maps quantum channels to quantum channels while satisfying suitable consistency relations. If the input and output quantum channels act on the same space, then we can consider dynamical semigroups of superchannels. No useful constructive characterization of the generators of such semigroups is known. We characterize these generators in two ways: First, we give an efficiently checkable criterion for whether a given map generates a dynamical semigroup of superchannels. Second, we identify a normal form for the generators of semigroups of quantum superchannels, analogous to the Gorini-Kossakowski-Lindblad-Sudarshan form in the case of quantum channels. To derive the normal form, we exploit the relation between superchannels and semicausal completely positive maps, reducing the problem to finding a normal form for the generators of semigroups of semicausal completely positive maps. We derive a normal for these generators using a novel technique, which applies also to infinite-dimensional systems. Our work paves the way for a thorough investigation of semigroups of superchannels: Numerical studies become feasible because admissible generators can now be explicitly generated and checked. Analytic properties of the corresponding evolution equations are now accessible via our normal form.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Functional analysis
en
dc.subject
Operator theory
en
dc.subject
Quantum dynamical map
en
dc.subject
Quantum dynamical semigroup
en
dc.subject
Quantum information
en
dc.subject
Stochastic processes
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Quantum and classical dynamical semigroups of superchannels and semicausal channels
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
92964
dcterms.bibliographicCitation.articlenumber
072204
dcterms.bibliographicCitation.doi
10.1063/5.0070635
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Physics
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics
dcterms.bibliographicCitation.originalpublisherplace
College Park, Md.
dcterms.bibliographicCitation.volume
63 (2022)
dcterms.bibliographicCitation.url
https://aip.scitation.org/doi/10.1063/5.0070635
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0022-2488
dcterms.isPartOf.eissn
1089-7658