dc.contributor.author
Sulis, S.
dc.contributor.author
Lendl, M.
dc.contributor.author
Cegla, H. M.
dc.contributor.author
Rodriguez Díaz, L. F.
dc.contributor.author
Bigot, L.
dc.contributor.author
Grootel, V. van
dc.contributor.author
Bekkelien, A.
dc.contributor.author
Collier Cameron, A.
dc.contributor.author
Maxted, P. F. L.
dc.contributor.author
Rauer, Heike
dc.date.accessioned
2023-04-20T06:29:52Z
dc.date.available
2023-04-20T06:29:52Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38992
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38708
dc.description.abstract
Context. Stellar granulation generates fluctuations in photometric and spectroscopic data whose properties depend on the stellar type, composition, and evolutionary state. Characterizing granulation is key for understanding stellar atmospheres and detecting planets.
Aims. We aim to detect the signatures of stellar granulation, link spectroscopic and photometric signatures of convection for main-sequence stars, and test predictions from 3D hydrodynamic models.
Methods. For the first time, we observed two bright stars (Teff = 5833 and 6205 K) with high-precision observations taken simultaneously with CHEOPS and ESPRESSO. We analyzed the properties of the stellar granulation signal in each individual dataset. We compared them to Kepler observations and 3D hydrodynamic models. While isolating the granulation-induced changes by attenuating and filtering the p-mode oscillation signals, we studied the relationship between photometric and spectroscopic observables.
Results. The signature of stellar granulation is detected and precisely characterized for the hotter F star in the CHEOPS and ESPRESSO observations. For the cooler G star, we obtain a clear detection in the CHEOPS dataset only. The TESS observations are blind to this stellar signal. Based on CHEOPS observations, we show that the inferred properties of stellar granulation are in agreement with both Kepler observations and hydrodynamic models. Comparing their periodograms, we observe a strong link between spectroscopic and photometric observables. Correlations of this stellar signal in the time domain (flux versus radial velocities, RV) and with specific spectroscopic observables (shape of the cross-correlation functions) are however difficult to isolate due to S/N dependent variations.
Conclusions. In the context of the upcoming PLATO mission and the extreme precision RV surveys, a thorough understanding of the properties of the stellar granulation signal is needed. The CHEOPS and ESPRESSO observations pave the way for detailed analyses of this stellar process.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
methods: data analysis
en
dc.subject
Sun: granulation
en
dc.subject
stars: atmospheres
en
dc.subject
techniques: photometric
en
dc.subject
techniques: radial velocities
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::520 Astronomie::520 Astronomie und zugeordnete Wissenschaften
dc.title
Connecting photometric and spectroscopic granulation signals with CHEOPS and ESPRESSO
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
A24
dcterms.bibliographicCitation.doi
10.1051/0004-6361/202244223
dcterms.bibliographicCitation.journaltitle
Astronomy & Astrophysics
dcterms.bibliographicCitation.volume
670
dcterms.bibliographicCitation.url
https://doi.org/10.1051/0004-6361/202244223
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Planetologie und Fernerkundung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0746
refubium.resourceType.provider
WoS-Alert