dc.contributor.author
Prenger, Kaitlyn
dc.contributor.author
Sun, Yangunli
dc.contributor.author
Ganeshan, Karthik
dc.contributor.author
Al-Temimy, Ameer
dc.contributor.author
Liang, Kun
dc.contributor.author
Dun, Chaochao
dc.contributor.author
Urban, Jeffrey J.
dc.contributor.author
Xiao, Jie
dc.contributor.author
Petit, Tristan
dc.contributor.author
Duin, Adri C. T. van
dc.date.accessioned
2023-04-19T12:06:46Z
dc.date.available
2023-04-19T12:06:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38968
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38684
dc.description.abstract
Two-dimensional transition-metal carbides and nitrides “MXenes” have demonstrated great potential as electrode materials for electrochemical energy storage systems. This is especially true for delaminated Ti3C2Tx, which already shows outstanding gravimetric and volumetric capacitance, with areal capacitance limited by thickness (only a few microns). However, the performance of multilayer Ti3C2Tx has been more modest. Here, we report on using metal cation (viz., Na+, K+, and Mg2+) pre-intercalated multilayer Ti3C2Tx as electrodes for aqueous supercapacitors. These electrodes are scalable and amenable to roll-to-roll manufacturing, with adjustable areal loadings of 5.2 to 20.1 mg/cm2. K–Ti3C2Tx exhibited the highest capacitances at different scan rates. A gravimetric capacitance comparable to that of delaminated MXene of up to 300 F/g was achieved for multilayer K–Ti3C2Tx but with an outstanding ultra-high areal capacitance of up to 5.7 F/cm2, which is 10-fold higher than the 0.5 F/cm2 of delaminated MXene and exceeds the 4.0 F/cm2 of microengineered MXene electrodes.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electrical properties
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Metal Cation Pre-Intercalated Ti3C2Tx MXene as Ultra-High Areal Capacitance Electrodes for Aqueous Supercapacitors
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acsaem.2c00653
dcterms.bibliographicCitation.journaltitle
ACS Applied Energy Materials
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
9373
dcterms.bibliographicCitation.pageend
9382
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acsaem.2c00653
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2574-0962
refubium.resourceType.provider
WoS-Alert