dc.contributor.author
Katsyv, Alexander
dc.contributor.author
Kumar, Anuj
dc.contributor.author
Saura, Patricia
dc.contributor.author
Pöverlein, Maximilian C.
dc.contributor.author
Freibert, Sven A.
dc.contributor.author
Stripp, Sven T.
dc.contributor.author
Jain, Surbhi
dc.contributor.author
Gamiz-Hernandez, Ana P.
dc.contributor.author
Kaila, Ville R. I.
dc.contributor.author
Müller, Volker
dc.date.accessioned
2023-04-17T09:47:24Z
dc.date.available
2023-04-17T09:47:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38925
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38641
dc.description.abstract
Electron bifurcation is a fundamental energy coupling mechanism widespread in microorganisms that thrive under anoxic conditions. These organisms employ hydrogen to reduce CO2, but the molecular mechanisms have remained enigmatic. The key enzyme responsible for powering these thermodynamically challenging reactions is the electron-bifurcating [FeFe]-hydrogenase HydABC that reduces low-potential ferredoxins (Fd) by oxidizing hydrogen gas (H2). By combining single-particle cryo-electron microscopy (cryoEM) under catalytic turnover conditions with site-directed mutagenesis experiments, functional studies, infrared spectroscopy, and molecular simulations, we show that HydABC from the acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui employ a single flavin mononucleotide (FMN) cofactor to establish electron transfer pathways to the NAD(P)+ and Fd reduction sites by a mechanism that is fundamentally different from classical flavin-based electron bifurcation enzymes. By modulation of the NAD(P)+ binding affinity via reduction of a nearby iron–sulfur cluster, HydABC switches between the exergonic NAD(P)+ reduction and endergonic Fd reduction modes. Our combined findings suggest that the conformational dynamics establish a redox-driven kinetic gate that prevents the backflow of the electrons from the Fd reduction branch toward the FMN site, providing a basis for understanding general mechanistic principles of electron-bifurcating hydrogenases.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Charge transfer
en
dc.subject
Cluster chemistry
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/jacs.2c11683
dcterms.bibliographicCitation.journaltitle
Journal of the American Chemical Society
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
5696
dcterms.bibliographicCitation.pageend
5709
dcterms.bibliographicCitation.volume
145
dcterms.bibliographicCitation.url
https://doi.org/10.1021/jacs.2c11683
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1520-5126
refubium.resourceType.provider
WoS-Alert