dc.contributor.author
Zhu, Ke
dc.contributor.author
Becker, Harry
dc.contributor.author
Zhu, J.-M.
dc.contributor.author
Xu, H.-P.
dc.contributor.author
Man, Q.-R.
dc.date.accessioned
2023-04-14T11:35:14Z
dc.date.available
2023-04-14T11:35:14Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38890
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38606
dc.description.abstract
Nickel is a siderophile and near-refractory element, making its isotopes a potential tool for tracing planetary accretion and differentiation. However, the origin of the Ni stable isotope difference between bulk silicate Earth (BSE) and chondrites remains enigmatic. To address this problem, we report high precision Ni stable isotope data of enstatite chondrites and achondrites that possess similar mass independent O and Ni isotope compositions like the Earth-Moon system. Bulk enstatite chondrites have δ60/58Ni values of 0.24 ± 0.08 ‰ (2 s.d., n = 13). Enstatite achondrites, including main-group aubrites, Shallowater and Itqiy, show relatively large δ60/58Ni variations, ranging from 0.03 ± 0.02 ‰ to 0.57 ± 0.04 ‰. This could reflect fractionations between sulfide and metal phases, as is evidenced by correlation between their S/Ni ratios and δ60/58Ni values. In enstatite achondrites, Ni is mainly hosted in metal and to a lesser extent in sulfides, so δ60/58Ni values in enstatite achondrites may represent the Ni isotopic values of the cores of their parent bodies. The overlapping δ60/58Ni values between bulk enstatite achondrites and enstatite chondrites indicate limited Ni stable isotope fractionation during core formation processes on reduced, sulfur-rich parent bodies. The Ni stable isotope gap between chondrites and the BSE could be possibly explained by chondrule-rich accretion model.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Ni stable isotopes
en
dc.subject
enstatite meteorites
en
dc.subject
core formation
en
dc.subject
metal-sulfide segregation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Planetary accretion and core formation inferred from Ni isotopes in enstatite meteorites
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.7185/geochemlet.2306
dcterms.bibliographicCitation.journaltitle
Geochemical Perspectives Letters
dcterms.bibliographicCitation.pagestart
1
dcterms.bibliographicCitation.pageend
7
dcterms.bibliographicCitation.volume
25
dcterms.bibliographicCitation.url
https://doi.org/10.7185/geochemlet.2306
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2410-3403
refubium.resourceType.provider
WoS-Alert