dc.contributor.author
De Wiljes, Jan-Hendrik
dc.contributor.author
Kreh, Martin
dc.date.accessioned
2023-04-13T12:28:54Z
dc.date.available
2023-04-13T12:28:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38868
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38584
dc.description.abstract
In 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. Since then peg solitaire has been considered on quite a few classes of graphs. Beeler and Gray introduced the natural idea of adding edges to make an unsolvable graph solvable. Recently, the graph invariant ms(G), which is the minimal number of additional edges needed to make G solvable, has been introduced and investigated on banana trees by the authors. In this article, we determine ms(G) for several families of unsolvable graphs. Furthermore, we provide some general results for this number of Hamiltonian graphs and graphs obtained via binary graph operations.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-sa/4.0/
dc.subject
peg solitaire
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Making graphs solvable in peg solitaire
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.5614/ejgta.2022.10.2.3
dcterms.bibliographicCitation.journaltitle
Electronic Journal of Graph Theory and Applications
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.pagestart
375
dcterms.bibliographicCitation.pageend
383
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.5614/ejgta.2022.10.2.3
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2338-2287
refubium.resourceType.provider
WoS-Alert