dc.contributor.author
Park, Jeongbin
dc.contributor.author
Choi, Wonyl
dc.contributor.author
Tiesmeyer, Sebastian
dc.contributor.author
Long, Brian
dc.contributor.author
Borm, Lars E.
dc.contributor.author
Garren, Emma
dc.contributor.author
Nguyen, Thuc Nghi
dc.contributor.author
Tasic, Bosiljka
dc.contributor.author
Codeluppi, Simone
dc.contributor.author
Graf, Tobias
dc.contributor.author
Schlesner, Matthias
dc.contributor.author
Stegle, Oliver
dc.contributor.author
Eils, Roland
dc.contributor.author
Ishaque, Naveed
dc.date.accessioned
2023-04-12T11:51:13Z
dc.date.available
2023-04-12T11:51:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38834
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38550
dc.description.abstract
Multiplexed fluorescence in situ hybridization techniques have enabled cell-type identification, linking transcriptional heterogeneity with spatial heterogeneity of cells. However, inaccurate cell segmentation reduces the efficacy of cell-type identification and tissue characterization. Here, we present a method called Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation (SSAM), a robust cell segmentation-free computational framework for identifying cell-types and tissue domains in 2D and 3D. SSAM is applicable to a variety of in situ transcriptomics techniques and capable of integrating prior knowledge of cell types. We apply SSAM to three mouse brain tissue images: the somatosensory cortex imaged by osmFISH, the hypothalamic preoptic region by MERFISH, and the visual cortex by multiplexed smFISH. Here, we show that SSAM detects regions occupied by known cell types that were previously missed and discovers new cell types.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational Biology
en
dc.subject
Gene Expression Profiling
en
dc.subject
Image Processing, Computer-Assisted
en
dc.subject
Imaging, Three-Dimensional
en
dc.subject
In Situ Hybridization, Fluorescence
en
dc.subject
Single-Cell Analysis
en
dc.subject
Somatosensory Cortex
en
dc.subject
Transcriptome
en
dc.subject
Visual Cortex
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Cell segmentation-free inference of cell types from in situ transcriptomics data
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
3545
dcterms.bibliographicCitation.doi
10.1038/s41467-021-23807-4
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.volume
12
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
34112806
dcterms.isPartOf.eissn
2041-1723