dc.contributor.author
Schwab, Michel
dc.contributor.author
Jäschke, Robert
dc.contributor.author
Fischer, Frank
dc.date.accessioned
2023-03-31T07:40:20Z
dc.date.available
2023-03-31T07:40:20Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38695
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38411
dc.description.abstract
Vossian Antonomasia (VA) is a well-known stylistic device based on attributing a certain property to a person by relating them to another person who is famous for this property. Although the morphological and semantic characteristics of this phenomenon have long been the subject of linguistic research, little is known about its distribution. In this paper, we describe end-to-end approaches for detecting and extracting VA expressions from large news corpora in order to study VA more broadly. We present two types of approaches: binary sentence classifiers that detect whether or not a sentence contains a VA expression, and sequence tagging of all parts of a VA on the word level, enabling their extraction. All models are based on neural networks and outperform previous approaches, best results are obtained with a fine-tuned BERT model. Furthermore, we study the impact of training data size and class imbalance by adding negative (and possibly noisy) instances to the training data. We also evaluate the models' performance on out-of-corpus and real-world data and analyze the ability of the sequence tagging model to generalize in terms of new entity types and syntactic patterns.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Vossian Antonomasia
en
dc.subject
neural network
en
dc.subject
sequence tagging
en
dc.subject
binary classification
en
dc.subject
information extraction
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
“The Rodney Dangerfield of Stylistic Devices”: End-to-End Detection and Extraction of Vossian Antonomasia Using Neural Networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
868249
dcterms.bibliographicCitation.doi
10.3389/frai.2022.868249
dcterms.bibliographicCitation.journaltitle
Frontiers in Artificial Intelligence
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.3389/frai.2022.868249
refubium.affiliation
Philosophie und Geisteswissenschaften
refubium.affiliation.other
Institut für Griechische und Lateinische Philologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2624-8212
refubium.resourceType.provider
WoS-Alert