dc.contributor.author
Scammell, Harley D.
dc.contributor.author
Ingham, Julian
dc.contributor.author
Geier, Max
dc.contributor.author
Li, Tommy
dc.date.accessioned
2023-04-18T10:11:55Z
dc.date.available
2023-04-18T10:11:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38602
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38318
dc.description.abstract
We explore higher-order topological superconductivity in an artificial Dirac material with intrinsic spin-orbit coupling, which is a doped Z2 topological insulator in the normal state. A mechanism for superconductivity due to repulsive interactions, pseudospin pairing, has recently been shown to naturally result in higher-order topology in Dirac systems past a minimum chemical potential [T. Li et al., 2D Mater. 9, 015031 (2022)]. Here we apply this theory through microscopic modeling of a superlattice potential imposed on an inversion-symmetric hole-doped semiconductor heterostructure, known as hole-based semiconductor artificial graphene, and extend previous work to include the effects of spin-orbit coupling. We find that spin-orbit coupling enhances interaction effects, providing an experimental handle to increase the efficiency of the superconducting mechanism. We show that the phase diagram of these systems, as a function of chemical potential and interaction strength, contains three superconducting states: a first-order topological p+ip state, a second-order topological spatially modulated p+iτp state, and a second-order topological extended s-wave state sτ. We calculate the symmetry-based indicators for the p+iτp and sτ states, which prove these states possess second-order topology. Exact diagonalization results are presented which illustrate the interplay between the boundary physics and spin-orbit interaction. We argue that this class of systems offers an experimental platform to engineer and explore first- and higher-order topological superconducting states.
en
dc.format.extent
34 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Spin-orbit coupling
en
dc.subject
Superconductivity
en
dc.subject
Symmetry protected topological states
en
dc.subject
Topological insulators
en
dc.subject
Topological superconductors
en
dc.subject
Semiconductors
en
dc.subject
Topological materials
en
dc.subject
Unconventional superconductors
en
dc.subject
Bogoliubov-de Gennes equations
en
dc.subject
Electron-correlation calculations
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Intrinsic first- and higher-order topological superconductivity in a doped topological insulator
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
92569
dcterms.bibliographicCitation.doi
10.1103/PhysRevB.105.195149
dcterms.bibliographicCitation.journaltitle
Physical Review B
dcterms.bibliographicCitation.number
19
dcterms.bibliographicCitation.originalpublishername
APS
dcterms.bibliographicCitation.originalpublisherplace
College Park, Md
dcterms.bibliographicCitation.pagestart
195149 (26 Seiten)
dcterms.bibliographicCitation.volume
105 (2022)
dcterms.bibliographicCitation.url
https://link.aps.org/doi/10.1103/PhysRevB.105.195149
dcterms.rightsHolder.url
https://journals.aps.org/copyrightFAQ.html#eprint
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Theoretische Physik
refubium.note.author
Bei der PDF-Datei handelt es sich um eine Manuskriptversion des Artikels.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2469-9950
dcterms.isPartOf.eissn
2469-9969