dc.contributor.author
Pennitz, Peter
dc.contributor.author
Kirsten, Holger
dc.contributor.author
Friedrich, Vincent D.
dc.contributor.author
Wyler, Emanuel
dc.contributor.author
Goekeri, Cengiz
dc.contributor.author
Obermayer, Benedikt
dc.contributor.author
Heinz, Gitta A.
dc.contributor.author
Mashreghi, Mir-Farzin
dc.contributor.author
Büttner, Maren
dc.contributor.author
Trimpert, Jakob
dc.contributor.author
Landthaler, Markus
dc.contributor.author
Suttorp, Norbert
dc.contributor.author
Hocke, Andreas C.
dc.contributor.author
Hippenstiel, Stefan
dc.contributor.author
Tönnies, Mario
dc.contributor.author
Scholz, Markus
dc.contributor.author
Kuebler, Wolfgang M.
dc.contributor.author
Witzenrath, Martin
dc.contributor.author
Hoenzke, Katja
dc.contributor.author
Nouailles, Geraldine
dc.date.accessioned
2023-03-22T14:41:30Z
dc.date.available
2023-03-22T14:41:30Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38519
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38235
dc.description.abstract
Single-cell ribonucleic acid sequencing is becoming widely employed to study biological processes at a novel resolution depth. The ability to analyse transcriptomes of multiple heterogeneous cell types in parallel is especially valuable for cell-focused lung research where a variety of resident and recruited cells are essential for maintaining organ functionality. We compared the single-cell transcriptomes from publicly available and unpublished datasets of the lungs in six different species: human (Homo sapiens), African green monkey (Chlorocebus sabaeus), pig (Sus domesticus), hamster (Mesocricetus auratus), rat (Ratios norvegicus) and mouse (Mus musculus) by employing RNA velocity and intercellular communication based on ligand-receptor co-expression, among other techniques. Specifically, we demonstrated a workflow for interspecies data integration, applied a single unified gene nomenclature, performed cell-specific clustering and identified marker genes for each species. Overall, integrative approaches combining newly sequenced as well as publicly available datasets could help identify species-specific transcriptomic signatures in both healthy and diseased lung tissue and select appropriate models for future respiratory research.
en
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Single-cell RNA sequencing (scRNA-seq)
en
dc.subject
Single lung cell transcriptomics
en
dc.subject
Pulmonologist’s guide
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
A pulmonologist's guide to perform and analyse cross-species single lung cell transcriptomics
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
220056
dcterms.bibliographicCitation.doi
10.1183/16000617.0056-2022
dcterms.bibliographicCitation.journaltitle
European Respiratory Review
dcterms.bibliographicCitation.number
165
dcterms.bibliographicCitation.originalpublishername
European Respiratory Society
dcterms.bibliographicCitation.volume
31
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
35896273
dcterms.isPartOf.issn
0905-9180
dcterms.isPartOf.eissn
1600-0617