dc.contributor.author
Merk, Timon
dc.contributor.author
Peterson, Victoria
dc.contributor.author
Lipski, Witold J
dc.contributor.author
Blankertz, Benjamin
dc.contributor.author
Turner, Robert S
dc.contributor.author
Li, Ningfei
dc.contributor.author
Horn, Andreas
dc.contributor.author
Richardson, Robert Mark
dc.contributor.author
Neumann, Wolf-Julian
dc.date.accessioned
2023-03-22T13:05:22Z
dc.date.available
2023-03-22T13:05:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38512
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-38230
dc.description.abstract
Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson's disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
deep brain stimulation
en
dc.subject
machine learning
en
dc.subject
neuromodulation
en
dc.subject
basal ganglia
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e75126
dcterms.bibliographicCitation.doi
10.7554/elife.75126
dcterms.bibliographicCitation.journaltitle
eLife
dcterms.bibliographicCitation.originalpublishername
eLife Sciences Publications
dcterms.bibliographicCitation.volume
11
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
35621994
dcterms.isPartOf.eissn
2050-084X