Tuberculosis (TB) today still is one of the leading causes of death worldwide. Host-pathogen interaction is crucial for establishing protection against pathogens and involves complex processes. Mycobacterium tuberculosis (M.tb) is a successful intracellular pathogen and evades host immune system to establish a protected niche. There is a great need to develop successful anti-TB therapies, and to overcome this mechanism of M.tb potentially may lead to novel intervention strategies. In this study genetic contribution of endosomal (Toll-like receptor (TLR)-4 and -8) and cytosolic (Cyclic GMP–AMP synthase/Stimulator of interferon genes (cGAS/STING) “pattern recognition receptors (PRRs”) towards disease susceptibility has been studied. It has been shown that both, endosomal and cytosolic recognition of microbial products is critical for the initiation of innate immune response against intracellular pathogens such as M.tb. In “single nucleotide polymorphism (SNP)” analyses of an Indian TB cohort, a TLR4 mutation affecting amino acid 399 (C/T), found frequently in India was shown to be associated with TB risk. The two mutations in TLR4 (299 & 399) analysed were not in complete linkage disequilibrium in our Indian cohort (73%) unlike Caucasians (98%). The difference in genotypic distribution among different ethnicities might be due to differences in local infection pressure during the migration of mankind. Furthermore, TLR4-399T and TLR8-1A conveyed increased susceptibility towards TB in an interdependent manner, even though there is no established TLR4 ligand present in M.tb. On the other hand, we analyzed cGAS/STING SNPs in an Indian TB-cohort. This pathway is an essential defence pathway within the cytosol after M.tb internalization and it’s DNA release inducing the production of type I Interferons (IFNs). We found that the presence of rs311686 SNP upstream of cGAS provides protection from TB overall and is differently distributed in pulmonary TB patients as compared to patients with extra-pulmonary and particularly relapse cases. This SNP furthermore differs in distribution when comparing individuals with respect to Bacille Calmette-Guérin (BCG) vaccination status. Conformational changes of cGAS were found by in silico modelling with respect to rs610913 SNP.
Functional analysis of wildtype and variant forms of TLR4 revealed that the double homozygous variant form (299/399) and 399 variant forms to induce higher tumor necrosis factor (TNF) levels in peripheral blood mononuclear cells (PBMCs) stimulated with Lipopolysaccharide (LPS) as compared to the wildtype and 299 mutation alone, which is in contrast to nuclear factor kappa-light-chain-enhancer of activated B cell (NF-KB) levels induced in human embryonic kidney (HEK) cells overexpressing the TLR variants. This could be because of the alternate pathway (TIR domain-containing adaptor inducing interferon-β/TRIF-related adaptor molecule (TRIF/TRAM)) which also induce type I IFNs in addition to NF-KB in HEK cells. TLR-TLR dimerization is an established pathway to recognize and fight pathogens in a better fashion. We describe here for the first time TLR4 and -8 heterodimer formation through TLR8 ligand (R848) interaction in in-sillico modeling and that the TLR4-399T variant disrupted this interaction with TLR8. This was confirmed by the co-immunoprecipitation and mass spectrometry analyses: Here we observed precipitated TLR4 with TLR8-targeted antibodies immobilized on agarose beads in TLR8 ligand stimulated HEK cells. Confocal microscopy confirmed a high co-localisation frequency of TLR4 and TLR8 that further increased upon TLR8 stimulation. This heterodimerization of TLR4 and TLR8 led to moderate activation NF-KB (in HEK cells) inducing TNF and Interleukin -12p40 (IL-12p40) (in PBMCs) along with the activation of interferon regulatory factor3 (IRF3) (in HEK cells). The variant form of TLR4-399T with TLR8 in contrast activated increased NF-KB, which was potentially caused by an alteration of subsequent immunological pathways involving type I IFNs. Taken together, we present evidence that the heterodimerization of TLR4 and TLR8 at the endosome is involved in M.tb recognition via TLR8 ligands, such as M.tb RNA, which induces optimal Th1 response. In summary, our findings implicate M.tb nucleic acid recognition in TB pathogenesis is an essential mechanism to understand the course of the disease. Genotyping for the genes investigated here could help in the future in TB risk stratification of individuals. This may ultimately help in prevention of disease and aid in eveloping new vaccination and treatment strategies.
Tuberkulose (TB) ist weltweit immer noch eine der führenden Todesursachen. Die Wirt-Pathogen Interaktion ist ein entscheidender Faktor, um den Schutz vor Infektionen einzuleiten und den Ausgang von Erkrankungen zu beeinflussen, und involviert komplexe Prozesse. Mycobacterium tuberculosis (M.tb) ist ein Erreger, der intrazellulär erfolgreich ist, indem er die angeborene Wirtsabwehr umgeht und in einer geschützten Nische überlebt. Erfolgreiche anti-TB Strategien werden dringend benötigt, und Ansätze, diesen Mechanismus zu überwinden, könnten zu neuen Interventionsstrategien führen. In dieser Studie wird untersucht, ob genetische Variationen endosomaler (Toll-like Rezeptor (TLR)-4 und -8) und zytosolischer (zyklische-GMP-AMP-Synthetase/Stimulator Interferon-induzierter Gene (cGAS/STING)) musterekennender Rezeptoren („PRRs“) zur Krankheitssuszeptibilität beitragen. Wie bekannt ist, sind sowohl die endosomale als auch die zytosolische Erkennung intrazellulärer Pathogene wie M.tb. von entscheidender Wichtigkeit für die Aktivierung der angeborenen Immunität. Durch die Untersuchung von „Einzelnukleotidpolymorphismen (SNPs)“ einer indischen TB-Kohorte und dem Vergleich ihrer Häufigkeit mit Kontrollgruppen wurde eine Mutation in TLR4 identifiziert, die die Aminosäure 399 (C/T) betrifft und in Indien häufig vorkommt, und das TB-Risiko beeinflusst. Dabei waren zwei hier untersuchte TLR4 Varianten (299 & 399) in der indischen Kohorte deutlich seltener miteinander gekoppelt (73%) als bei bisher untersuchten „kaukasischen Kontrollen‘‘ (98%). Diese Unterschiede in der Verteilung von genetischen Variationen könnten auf unterschiedlichen Selektionsdruck durch Infektionen und die Migration der Menschheit zu erklären sein. Die Varianten TLR4-399T und TLR8-1A waren mit einer erhöhten TB-Suszeptibilität assoziiert unabhängig voneinander, obwohl kein TLR4 Ligand in M.tb. bekannt ist. Auf der anderen Seite haben wir Varianten von cGAS/STING in einer indischen TB-Kohorte untersucht. Dieser Signalweg ist wichtig für die Wirtsabwehr nach der Internalisierung von M.tb. im Zytosol und der Freisetzung von mykobakterieller DNA, die die Produktion von Typ I Interferonen (IFN) induziert. Wir fanden, dass der rs311686 SNP, der dem cGAS-Gen vorgelagert ist, Individuen vor der TB Erkrankung schützt und dass diese Genvariation unterschiedlich verteilt ist in Patienten mit pulmonaler TB verglichen mit extrapulmonaler TB und „relapse-Fällen“. Dieser SNP ist außerdem unterschiedlich verteilt wenn Patientengruppen nach ihrem Bacillus Calmette-Guerin (BCG)-Impfstatus unterschieden werden. Der rs610913 cGAS SNP scheint die Konformation von cGAS zu verändern, wie wir durch in silico modeling zeigen konnten.
Funktionelle Analyse von Wildtyp- und Variantenformen von TLR4 ergab, dass doppelt homozygote Varianten (299/399) und die 399 Variante dazu führten, dass sich größere Mengen Tumornekrosefaktor (TNF) in peripheren mononukleären Zellen (PBMCs) durch Lipopolysaccharid (LPS) induzieren ließen, was im Widerspruch zur Aktivierung von nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-KB) in human embryonalen Nierenzellen (HEK)-steht, die die jeweiligen Rezeptorvarianten überexprimieren. Die Ursache für diese Diskrepanz könnte darin liegen, dass es neben dem NF-KB Signalweg in HEK-Zellen noch den TIR domain-containing adaptor inducing interferon-β/TRIF-related adaptor molecule (TRIF/TRAM)-Signalweg gibt, der Typ-I IFN induziert. Die Ausbildung von TLR-TLR Dimeren ist beschrieben, um so Pathogen besser erkennen und bekämpfen zu können. Wir zeigen hier erstmalig, dass eine Heterodimerisierung von TLR4 und -8 stattfindet, die durch die Bindung eines TLR8-Liganden (R848) induziert wird. In-silico modeling führte zu der Annahme, dass die TLR4-399T-Variante diese Interaktion unmöglich macht. Diese Ergebnisse wurden durch co-Immunopräzipitations- und massenspektometrische Analysen bestätigt: In HEK-Zellen, die mit TLR8-Liganden stimuliert wurden, konnten wir TLR4 mit an Agarose gekoppelten Antikörpern, die gegen TLR8 gerichtet waren, kopräzipitieren. Konfokale Mikroskopie bestätigte eine hohe Frequenz der Kolokalisierung von TLR4 und -8, die weiter zunahm, wenn TLR8 stimuliert wurde. Kolokalisierung von TLR4 und -8 führte zu einer moderaten Aktivierung von NF-KB (in HEK-Zellen) und zu einer Induktion von TNF und Interleukin-12p40 (IL-12p40) (in PBMCs) gemeinsam mit der Aktivierung von interferon regulatory factor3 (IRF3). Die TLR4 Variante TLR4-399T konnte gemeinsam mit TLR8 mehr NF-KB aktivieren, was möglicherweise durch die Veränderung anderer Signalwege, die Typ I IFN beinhalten, bedingt ist. Insgesamt präsentieren wir hier Evidenz dafür, dass eine endosomale Heterodimerisierung von TLR4 und -8 in die M.tb-Erkennung über TLR8-Liganden, wie M.tb-RNA involviert ist, was zu einer optimalen Th1-Antwort führt. Zusammengefasst zeigen unsere Ergebnisse, dass die Erkennung der Nukleinsäuren von M.tb. wichtig für die Pathogenese der TB ist und dass dieser Mechanismus von zentraler Bedeutung für die Pathogenese dieser Erkrankung sein könnte. Eine Genotypisierung von Individuen bzgl. der hier genannten Gene könnte helfen, eine Risikostratifizierung durchzuführen. Dies könnte in der Zukunft dazu führen, die Prävention zu verbessern und mglw. neue Impf- und Behandlungsstrategien für die TB zu entwickeln.