dc.contributor.author
Alphonse, Amal
dc.contributor.author
Caetano, Diogo
dc.contributor.author
Djurdjevac, Ana
dc.contributor.author
Elliott, Charles M.
dc.date.accessioned
2023-03-10T10:28:34Z
dc.date.available
2023-03-10T10:28:34Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38269
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37988
dc.description.abstract
We develop a functional framework suitable for the treatment of partial differential equations and variational problems on evolving families of Banach spaces. We propose a definition for the weak time derivative that does not rely on the availability of a Hilbertian structure and explore conditions under which spaces of weakly differentiable functions (with values in an evolving Banach space) relate to classical Sobolev–Bochner spaces. An Aubin–Lions compactness result is proved. We analyse concrete examples of function spaces over time-evolving spatial domains and hypersurfaces for which we explicitly provide the definition of the time derivative and verify isomorphism properties with the aforementioned Sobolev–Bochner spaces. We conclude with the proof of well posedness for a class of nonlinear monotone problems on an abstract evolving space (generalising the evolutionary p-Laplace equation on a moving domain or surface) and identify some additional problems that can be formulated with the setting developed in this work.
en
dc.format.extent
71 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
function spaces
en
dc.subject
time derivatives
en
dc.subject
Banach spaces
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Function spaces, time derivatives and compactness for evolving families of Banach spaces with applications to PDEs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.jde.2022.12.032
dcterms.bibliographicCitation.journaltitle
Journal of Differential Equations
dcterms.bibliographicCitation.pagestart
268
dcterms.bibliographicCitation.pageend
338
dcterms.bibliographicCitation.volume
353
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.jde.2022.12.032
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1090-2732
refubium.resourceType.provider
WoS-Alert