dc.contributor.author
Huo, Wenjie
dc.contributor.author
Bakir, Nasim
dc.contributor.author
Gumenyuk, Andrey
dc.contributor.author
Rethmeier, Michael
dc.contributor.author
Wolter, Katinka
dc.date.accessioned
2023-03-09T14:33:54Z
dc.date.available
2023-03-09T14:33:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38257
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37975
dc.description.abstract
The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
convolutional neural network
en
dc.subject
strain fields prediction
en
dc.subject
laser beam welding
en
dc.subject
solidification cracking
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::000 Informatik, Informationswissenschaft, allgemeine Werke
dc.title
Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2930
dcterms.bibliographicCitation.doi
10.3390/app13052930
dcterms.bibliographicCitation.journaltitle
Applied Sciences
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.3390/app13052930
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2076-3417