dc.contributor.author
Lichtner, Gregor
dc.contributor.author
Balzer, Felix
dc.contributor.author
Haufe, Stefan
dc.contributor.author
Giesa, Niklas
dc.contributor.author
Schiefenhövel, Fridtjof
dc.contributor.author
Schmieding, Malte
dc.contributor.author
Jurth, Carlo
dc.contributor.author
Kopp, Wolfgang
dc.contributor.author
Akalin, Altuna
dc.contributor.author
Schaller, Stefan J.
dc.contributor.author
Weber-Carstens, Steffen
dc.contributor.author
Spies, Claudia
dc.contributor.author
Dincklage, Falk von
dc.date.accessioned
2023-03-03T13:52:16Z
dc.date.available
2023-03-03T13:52:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38202
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37919
dc.description.abstract
In a pandemic with a novel disease, disease-specific prognosis models are available only with a delay. To bridge the critical early phase, models built for similar diseases might be applied. To test the accuracy of such a knowledge transfer, we investigated how precise lethal courses in critically ill COVID-19 patients can be predicted by a model trained on critically ill non-COVID-19 viral pneumonia patients. We trained gradient boosted decision tree models on 718 (245 deceased) non-COVID-19 viral pneumonia patients to predict individual ICU mortality and applied it to 1054 (369 deceased) COVID-19 patients. Our model showed a significantly better predictive performance (AUROC 0.86 [95% CI 0.86-0.87]) than the clinical scores APACHE2 (0.63 [95% CI 0.61-0.65]), SAPS2 (0.72 [95% CI 0.71-0.74]) and SOFA (0.76 [95% CI 0.75-0.77]), the COVID-19-specific mortality prediction models of Zhou (0.76 [95% CI 0.73-0.78]) and Wang (laboratory: 0.62 [95% CI 0.59-0.65]; clinical: 0.56 [95% CI 0.55-0.58]) and the 4C COVID-19 Mortality score (0.71 [95% CI 0.70-0.72]). We conclude that lethal courses in critically ill COVID-19 patients can be predicted by a machine learning model trained on non-COVID-19 patients. Our results suggest that in a pandemic with a novel disease, prognosis models built for similar diseases can be applied, even when the diseases differ in time courses and in rates of critical and lethal courses.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
critically ill COVID-19 patients
en
dc.subject
machine learning model
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Predicting lethal courses in critically ill COVID-19 patients using a machine learning model trained on patients with non-COVID-19 viral pneumonia
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
13205
dcterms.bibliographicCitation.doi
10.1038/s41598-021-92475-7
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.originalpublishername
Springer Nature
dcterms.bibliographicCitation.volume
11
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.funding
Springer Nature DEAL
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
34168198
dcterms.isPartOf.eissn
2045-2322