dc.contributor.author
Solopova, Veronika
dc.contributor.author
Popescu, Oana-Iuliana
dc.contributor.author
Benzmüller, Christoph
dc.contributor.author
Landgraf, Tim
dc.date.accessioned
2023-05-19T11:43:24Z
dc.date.available
2023-05-19T11:43:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38190
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37906
dc.description.abstract
The full-scale conflict between the Russian Federation and Ukraine generated an unprecedented amount of news articles and social media data reflecting opposing ideologies and narratives. These polarized campaigns have led to mutual accusations of misinformation and fake news, shaping an atmosphere of confusion and mistrust for readers worldwide. This study analyses how the media affected and mirrored public opinion during the first month of the war using news articles and Telegram news channels in Ukrainian, Russian, Romanian, French and English. We propose and compare two methods of multilingual automated pro-Kremlin propaganda identification, based on Transformers and linguistic features. We analyse the advantages and disadvantages of both methods, their adaptability to new genres and languages, and ethical considerations of their usage for content moderation. With this work, we aim to lay the foundation for further development of moderation tools tailored to the current conflict.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Automated Content Moderation
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Automated Multilingual Detection of Pro-Kremlin Propaganda in Newspapers and Telegram Posts
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s13222-023-00437-2
dcterms.bibliographicCitation.journaltitle
Datenbank-Spektrum
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
5
dcterms.bibliographicCitation.pageend
14
dcterms.bibliographicCitation.volume
23
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s13222-023-00437-2
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik / Dahlem Center for Machine Learning and Robotics

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1610-1995