dc.contributor.author
Melnyk, Kateryna
dc.contributor.author
Weimann, Kuba
dc.contributor.author
Conrad, Tim O. F.
dc.date.accessioned
2023-03-03T10:36:24Z
dc.date.available
2023-03-03T10:36:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38189
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37905
dc.description.abstract
Large-scale perturbations in the microbiome constitution are strongly correlated, whether as a driver or a consequence, with the health and functioning of human physiology. However, understanding the difference in the microbiome profiles of healthy and ill individuals can be complicated due to the large number of complex interactions among microbes. We propose to model these interactions as a time-evolving graph where nodes represent microbes and edges are interactions among them. Motivated by the need to analyse such complex interactions, we develop a method that can learn a low-dimensional representation of the time-evolving graph while maintaining the dynamics occurring in the high-dimensional space. Through our experiments, we show that we can extract graph features such as clusters of nodes or edges that have the highest impact on the model to learn the low-dimensional representation. This information is crucial for identifying microbes and interactions among them that are strongly correlated with clinical diseases. We conduct our experiments on both synthetic and real-world microbiome datasets.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Applied mathematics
en
dc.subject
Computer science
en
dc.subject
Microbiology
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Understanding microbiome dynamics via interpretable graph representation learning
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2058
dcterms.bibliographicCitation.doi
10.1038/s41598-023-29098-7
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41598-023-29098-7
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2045-2322