dc.contributor.author
Dommer, Abigail
dc.contributor.author
Casalino, Lorenzo
dc.contributor.author
Kearns, Fiona
dc.contributor.author
Rosenfeld, Mia
dc.contributor.author
Wauer, Nicholas
dc.contributor.author
Ahn, Surl-Hee
dc.contributor.author
Russo, John
dc.contributor.author
Oliveira, Sofia
dc.contributor.author
Morris, Clare
dc.contributor.author
Sztain, Terra
dc.date.accessioned
2023-02-24T14:13:11Z
dc.date.available
2023-02-24T14:13:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38109
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37822
dc.description.abstract
We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
molecular dynamics
en
dc.subject
deep learning
en
dc.subject
multiscale simulation
en
dc.subject
weighted ensemble
en
dc.subject
computational virology
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::616 Krankheiten
dc.title
#COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1177/10943420221128233
dcterms.bibliographicCitation.journaltitle
The International Journal of High Performance Computing Applications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.pagestart
28
dcterms.bibliographicCitation.pageend
44
dcterms.bibliographicCitation.volume
37
dcterms.bibliographicCitation.url
https://doi.org/10.1177/10943420221128233
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1741-2846
refubium.resourceType.provider
WoS-Alert