dc.contributor.author
Pohl, Steffi
dc.contributor.author
Schulze, Daniel
dc.contributor.author
Stets, Eric
dc.date.accessioned
2023-02-24T09:44:45Z
dc.date.available
2023-02-24T09:44:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38063
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37776
dc.description.abstract
When measurement invariance does not hold, researchers aim for partial measurement invariance by identifying anchor items that are assumed to be measurement invariant. In this paper, we build on Bechger and Maris’s approach for identification of anchor items. Instead of identifying differential item functioning (DIF)-free items, they propose to identify different sets of items that are invariant in item parameters within the same item set. We extend their approach by an additional step in order to allow for identification of homogeneously functioning item sets. We evaluate the performance of the extended cluster approach under various conditions and compare its performance to that of previous approaches, that are the equal-mean difficulty (EMD) approach and the iterative forward approach. We show that the EMD and the iterative forward approaches perform well in conditions with balanced DIF or when DIF is small. In conditions with large and unbalanced DIF, they fail to recover the true group mean differences. With appropriate threshold settings, the cluster approach identified a cluster that resulted in unbiased mean difference estimates in all conditions. Compared to previous approaches, the cluster approach allows for a variety of different assumptions as well as for depicting the uncertainty in the results that stem from the choice of the assumption. Using a real data set, we illustrate how the assumptions of the previous approaches may be incorporated in the cluster approach and how the chosen assumption impacts the results.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
measurement invariance
en
dc.subject
differential item functioning
en
dc.subject
scale indeterminacy
en
dc.subject
cluster analysis
en
dc.subject
anchor items
en
dc.subject.ddc
100 Philosophie und Psychologie::150 Psychologie::150 Psychologie
dc.title
Partial Measurement Invariance: Extending and Evaluating the Cluster Approach for Identifying Anchor Items
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1177/01466216211042809
dcterms.bibliographicCitation.journaltitle
Applied Psychological Measurement
dcterms.bibliographicCitation.number
7-8
dcterms.bibliographicCitation.pagestart
477
dcterms.bibliographicCitation.pageend
493
dcterms.bibliographicCitation.volume
45
dcterms.bibliographicCitation.url
https://doi.org/10.1177/01466216211042809
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Methoden und Evaluation/Qualitätssicherung
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1552-3497
refubium.resourceType.provider
WoS-Alert