dc.contributor.author
Martini, Franziska
dc.contributor.author
Samula, Paul
dc.contributor.author
Keller, Tobias R.
dc.contributor.author
Klinger, Ulrike
dc.date.accessioned
2023-02-24T09:37:30Z
dc.date.available
2023-02-24T09:37:30Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38061
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37775
dc.description.abstract
Social bots – partially or fully automated accounts on social media platforms – have not only been widely discussed, but have also entered political, media and research agendas. However, bot detection is not an exact science. Quantitative estimates of bot prevalence vary considerably and comparative research is rare. We show that findings on the prevalence and activity of bots on Twitter depend strongly on the methods used to identify automated accounts. We search for bots in political discourses on Twitter, using three different bot detection methods: Botometer, Tweetbotornot and “heavy automation”. We drew a sample of 122,884 unique user Twitter accounts that had produced 263,821 tweets contributing to five political discourses in five Western democracies. While all three bot detection methods classified accounts as bots in all our cases, the comparison shows that the three approaches produce very different results. We discuss why neither manual validation nor triangulation resolves the basic problems, and conclude that social scientists studying the influence of social bots on (political) communication and discourse dynamics should be careful with easy-to-use methods, and consider interdisciplinary research.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
bot detection
en
dc.subject
comparative research
en
dc.subject
political discourse
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::070 Publizistische Medien, Journalismus, Verlagswesen::070 Publizistische Medien, Journalismus, Verlagswesen
dc.title
Bot, or not? Comparing three methods for detecting social bots in five political discourses
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1177/20539517211033566
dcterms.bibliographicCitation.journaltitle
Big Data & Society
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1177/20539517211033566
refubium.affiliation
Politik- und Sozialwissenschaften
refubium.affiliation.other
Institut für Publizistik- und Kommunikationswissenschaft
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2053-9517
refubium.resourceType.provider
WoS-Alert