dc.contributor.author
Garrity, Oisin
dc.contributor.author
Rodriguez, Alvaro
dc.contributor.author
Mueller, Niclas S.
dc.contributor.author
Frank, Otakar
dc.contributor.author
Kusch, Patryk
dc.date.accessioned
2023-03-06T12:08:37Z
dc.date.available
2023-03-06T12:08:37Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/38043
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37759
dc.description.abstract
The optoelectronic properties of nanoscale systems such as carbon nanotubes (CNTs), graphene nanoribbons and transition metal dichalcogenides (TMDCs) are determined by their dielectric function. This complex, frequency dependent function is affected by excitonic resonances, charge transfer effects, doping, sample stress and strain, and surface roughness. Knowledge of the dielectric function grants access to a material’s transmissive and absorptive characteristics. Here we use the dual scanning near field optical microscope (dual s-SNOM) for imaging local dielectric variations and extracting dielectric function values using a pre-established mathematical inversion method. To demonstrate our approach, we studied a monolayer of WS2 on bulk Au and identified two areas with differing levels of charge transfer. The experiments highlight a further advantage of the technique: the dielectric function of contaminated samples can be measured, as dirty areas can be easily identified and excluded for the calculation, being important especially for exfoliated 2D materials (Rodriguez et al., 2021). Our measurements are corroborated by atomic force microscopy (AFM), Kelvin force probe microscopy (KPFM), photoluminescence (PL) intensity mapping, and tip enhanced photoluminescence (TEPL). We extracted local dielectric variations from s-SNOM images and confirmed the reliability of the obtained values with spectroscopic imaging ellipsometry (SIE) measurements.
en
dc.format.extent
15 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Carbon nanotubes
en
dc.subject
Optoelectronic properties
en
dc.subject
Near field optical microscopy
en
dc.subject
Dielectric function
en
dc.subject
Graphene nanoribbons
en
dc.subject
Transition metal dichalcogenides
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
Probing the local dielectric function of WS2 on an Au substrate by near field optical microscopy operating in the visible spectral range
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
91607
dcterms.bibliographicCitation.doi
10.1016/j.apsusc.2021.151672
dcterms.bibliographicCitation.journaltitle
Applied surface science
dcterms.bibliographicCitation.originalpublishername
Elsevier
dcterms.bibliographicCitation.originalpublisherplace
Amsterdam
dcterms.bibliographicCitation.pagestart
151672
dcterms.bibliographicCitation.volume
574 (2022)
dcterms.bibliographicCitation.url
https://linkinghub.elsevier.com/retrieve/pii/S0169433221027173
dcterms.rightsHolder.url
https://www.elsevier.com/about/policies/sharing
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0169-4332
dcterms.isPartOf.eissn
1873-5584