dc.contributor.author
Lee, Yeonjoo
dc.contributor.author
Rojas-Perilla, Natalia
dc.contributor.author
Runge, Marina
dc.contributor.author
Schmid, Timo
dc.date.accessioned
2023-02-17T10:30:21Z
dc.date.available
2023-02-17T10:30:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37964
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37680
dc.description.abstract
When data analysts use linear mixed models, they usually encounter two practical problems: (a) the true model is unknown and (b) the Gaussian assumptions of the errors do not hold. While these problems commonly appear together, researchers tend to treat them individually by (a) finding an optimal model based on the conditional Akaike information criterion (cAIC) and (b) applying transformations on the dependent variable. However, the optimal model depends on the transformation and vice versa. In this paper, we aim to solve both problems simultaneously. In particular, we propose an adjusted cAIC by using the Jacobian of the particular transformation such that various model candidates with differently transformed data can be compared. From a computational perspective, we propose a step-wise selection approach based on the introduced adjusted cAIC. Model-based simulations are used to compare the proposed selection approach to alternative approaches. Finally, the introduced approach is applied to Mexican data to estimate poverty and inequality indicators for 81 municipalities.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Box-Cox transformation
en
dc.subject
Empirical best predictor
en
dc.subject
Small area estimation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Variable selection using conditional AIC for linear mixed models with data-driven transformations
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
27
dcterms.bibliographicCitation.doi
10.1007/s11222-022-10198-9
dcterms.bibliographicCitation.journaltitle
Statistics and Computing
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
33
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s11222-022-10198-9
refubium.affiliation
Wirtschaftswissenschaft
refubium.affiliation.other
Volkswirtschaftslehre / Institut für Statistik und Ökonometrie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1573-1375
refubium.resourceType.provider
WoS-Alert