dc.contributor.author
Wagner, Fabian
dc.contributor.author
Thies, Mareike
dc.contributor.author
Gu, Mingxuan
dc.contributor.author
Huang, Yixing
dc.contributor.author
Pechmann, Sabrina
dc.contributor.author
Patwari, Mayank
dc.contributor.author
Ploner, Stefan
dc.contributor.author
Aust, Oliver
dc.contributor.author
Uderhardt, Stefan
dc.contributor.author
Schett, Georg
dc.contributor.author
Christiansen, Silke H.
dc.contributor.author
Maier, Andreas
dc.date.accessioned
2023-02-28T15:01:43Z
dc.date.available
2023-02-28T15:01:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37947
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37663
dc.description.abstract
Background
Computed tomography (CT) is widely used as an imaging tool to visualize three-dimensional structures with expressive bone-soft tissue contrast. However, CT resolution can be severely degraded through low-dose acquisitions, highlighting the importance of effective denoising algorithms.
Purpose
Most data-driven denoising techniques are based on deep neural networks, and therefore, contain hundreds of thousands of trainable parameters, making them incomprehensible and prone to prediction failures. Developing understandable and robust denoising algorithms achieving state-of-the-art performance helps to minimize radiation dose while maintaining data integrity.
Methods
This work presents an open-source CT denoising framework based on the idea of bilateral filtering. We propose a bilateral filter that can be incorporated into any deep learning pipeline and optimized in a purely data-driven way by calculating the gradient flow toward its hyperparameters and its input. Denoising in pure image-to-image pipelines and across different domains such as raw detector data and reconstructed volume, using a differentiable backprojection layer, is demonstrated. In contrast to other models, our bilateral filter layer consists of only four trainable parameters and constrains the applied operation to follow the traditional bilateral filter algorithm by design.
Results
Although only using three spatial parameters and one intensity range parameter per filter layer, the proposed denoising pipelines can compete with deep state-of-the-art denoising architectures with several hundred thousand parameters. Competitive denoising performance is achieved on x-ray microscope bone data and the 2016 Low Dose CT Grand Challenge data set. We report structural similarity index measures of 0.7094 and 0.9674 and peak signal-to-noise ratio values of 33.17 and 43.07 on the respective data sets.
Conclusions
Due to the extremely low number of trainable parameters with well-defined effect, prediction reliance and data integrity is guaranteed at any time in the proposed pipelines, in contrast to most other deep learning-based denoising architectures.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
bilateral filter
en
dc.subject
known operator learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Ultralow‐parameter denoising: trainable bilateral filter layers in computed tomography
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
91703
dcterms.bibliographicCitation.doi
10.1002/mp.15718
dcterms.bibliographicCitation.journaltitle
Medical physics
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.originalpublishername
Wiley
dcterms.bibliographicCitation.originalpublisherplace
Hoboken, NJ
dcterms.bibliographicCitation.pagestart
5107
dcterms.bibliographicCitation.pageend
5120
dcterms.bibliographicCitation.volume
49 (2022)
dcterms.bibliographicCitation.url
https://onlinelibrary.wiley.com/doi/10.1002/mp.15718
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0094-2405
dcterms.isPartOf.eissn
2473-4209