dc.contributor.author
Daskalova, Albena
dc.contributor.author
Filipov, Emil
dc.contributor.author
Angelova, Liliya
dc.contributor.author
Stefanov, Radostin
dc.contributor.author
Tatchev, Dragomir
dc.contributor.author
Avdeev, Georgi
dc.contributor.author
Sotelo, Lamborghini
dc.contributor.author
Christiansen, Silke H.
dc.contributor.author
Sarau, George
dc.contributor.author
Leuchs, Gerd
dc.contributor.author
Iordanova, Ekaterina
dc.contributor.author
Buchvarov, Ivan
dc.date.accessioned
2023-02-28T14:54:47Z
dc.date.available
2023-02-28T14:54:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37946
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37662
dc.description.abstract
The use of laser processing for the creation of diverse morphological patterns onto the surface of polymer scaffolds represents a method for overcoming bacterial biofilm formation and inducing enhanced cellular dynamics. We have investigated the influence of ultra-short laser parameters on 3D-printed poly-ε-caprolactone (PCL) and poly-ε-caprolactone/hydroxyapatite (PCL/HA) scaffolds with the aim of creating submicron geometrical features to improve the matrix biocompatibility properties. Specifically, the present research was focused on monitoring the effect of the laser fluence (F) and the number of applied pulses (N) on the morphological, chemical and mechanical properties of the scaffolds. SEM analysis revealed that the femtosecond laser treatment of the scaffolds led to the formation of two distinct surface geometrical patterns, microchannels and single microprotrusions, without triggering collateral damage to the surrounding zones. We found that the microchannel structures favor the hydrophilicity properties. As demonstrated by the computer tomography results, surface roughness of the modified zones increases compared to the non-modified surface, without influencing the mechanical stability of the 3D matrices. The X-ray diffraction analysis confirmed that the laser structuring of the matrices did not lead to a change in the semi-crystalline phase of the PCL. The combinations of two types of geometrical designs—wood pile and snowflake—with laser-induced morphologies in the form of channels and columns are considered for optimizing the conditions for establishing an ideal scaffold, namely, precise dimensional form, mechanical stability, improved cytocompatibility and antibacterial behavior.
en
dc.format.extent
22 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
ultra-short laser processing
en
dc.subject
bone tissue engineering
en
dc.subject
surface patterns;
en
dc.subject
biodegradable polymers
en
dc.subject
antibacterial structuring
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Ultra-short laser surface properties optimization of biocompatibility characteristics of 3D poly-ε-caprolactone and hydroxyapatite composite scaffolds
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
91708
dcterms.bibliographicCitation.articlenumber
7513
dcterms.bibliographicCitation.doi
10.3390/ma14247513
dcterms.bibliographicCitation.journaltitle
Materials
dcterms.bibliographicCitation.number
24
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.originalpublisherplace
Basel
dcterms.bibliographicCitation.volume
14 (2022)
dcterms.bibliographicCitation.url
https://www.mdpi.com/1996-1944/14/24/7513
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.note.author
9990009602885
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1996-1944