dc.contributor.author
Martín-Fuentes, Cristina
dc.contributor.author
Parreiras, Sofia O.
dc.contributor.author
Urgel, José I.
dc.contributor.author
Rubio-Giménez, Víctor
dc.contributor.author
Muñiz Cano, Beatriz
dc.contributor.author
Moreno, Daniel
dc.contributor.author
Lauwaet, Koen
dc.contributor.author
Valvidares, Manuel
dc.contributor.author
Valbuena, Miguel A.
dc.contributor.author
Gargiani, Pierluigi
dc.contributor.author
Kuch, Wolfgang
dc.contributor.author
Camarero, Julio
dc.contributor.author
Gallego, José M.
dc.contributor.author
Miranda, Rodolfo
dc.contributor.author
Martínez, José I.
dc.contributor.author
Martí-Gastaldo, Carlos
dc.contributor.author
Écija, David
dc.date.accessioned
2023-08-28T04:37:15Z
dc.date.available
2023-08-28T04:37:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37919
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37635
dc.description.abstract
The design of antiferromagnetic nanomaterials preserving large orbital magnetic moments is important to protect their functionalities against magnetic perturbations. Here, we exploit an archetype H6HOTP species for conductive metal–organic frameworks to design a Co-HOTP one-atom-thick metal–organic architecture on a Au(111) surface. Our multidisciplinary scanning probe microscopy, X-ray absorption spectroscopy, X-ray linear dichroism, and X-ray magnetic circular dichroism study, combined with density functional theory simulations, reveals the formation of a unique network design based on threefold Co+2 coordination with deprotonated ligands, which displays a large orbital magnetic moment with an orbital to effective spin moment ratio of 0.8, an in-plane easy axis of magnetization, and large magnetic anisotropy. Our simulations suggest an antiferromagnetic ground state, which is compatible with the experimental findings. Such a Co-HOTP metal–organic network exemplifies how on-surface chemistry can enable the design of field-robust antiferromagnetic materials.
en
dc.format.extent
6 Seiten (Manuskriptversion)
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Density functional theory
en
dc.subject
Fourier transforms
en
dc.subject
Magnetic properties
en
dc.subject
Quantum mechanics
en
dc.subject
Scanning tunneling microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne Physik
dc.title
On-surface design of a 2D cobalt-organic network preserving large orbital magnetic moment
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
91436
dcterms.bibliographicCitation.doi
10.1021/jacs.2c05894
dcterms.bibliographicCitation.journaltitle
Journal of the American Chemical Society
dcterms.bibliographicCitation.number
35
dcterms.bibliographicCitation.originalpublishername
ACS Publications
dcterms.bibliographicCitation.originalpublisherplace
Washington, DC
dcterms.bibliographicCitation.pagestart
16034
dcterms.bibliographicCitation.pageend
16041
dcterms.bibliographicCitation.volume
144 (2022)
dcterms.bibliographicCitation.url
https://pubs.acs.org/doi/10.1021/jacs.2c05894
dcterms.rightsHolder.url
´https://publish.acs.org/publish/author_guidelines?coden=jacsat#prior_publication_policy
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.note.author
Bei der PDF-Datei handelt es sich um eine Manuskriptversion des Artikels.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1520-5126
dcterms.isPartOf.eissn
1520-5126