dc.contributor.author
Entwistle, Michael T.
dc.contributor.author
Schätzle, Zeno
dc.contributor.author
Erdman, Paolo Andrea
dc.contributor.author
Hermann, Jan
dc.contributor.author
Noé, Frank
dc.date.accessioned
2023-02-06T13:44:55Z
dc.date.available
2023-02-06T13:44:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37858
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37571
dc.description.abstract
Obtaining accurate ground and low-lying excited states of electronic systems is crucial in a multitude of important applications. One ab initio method for solving the Schrödinger equation that scales favorably for large systems is variational quantum Monte Carlo (QMC). The recently introduced deep QMC approach uses ansatzes represented by deep neural networks and generates nearly exact ground-state solutions for molecules containing up to a few dozen electrons, with the potential to scale to much larger systems where other highly accurate methods are not feasible. In this paper, we extend one such ansatz (PauliNet) to compute electronic excited states. We demonstrate our method on various small atoms and molecules and consistently achieve high accuracy for low-lying states. To highlight the method’s potential, we compute the first excited state of the much larger benzene molecule, as well as the conical intersection of ethylene, with PauliNet matching results of more expensive high-level methods.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Chemical physics
en
dc.subject
Computational chemistry
en
dc.subject
Excited states
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Electronic excited states in deep variational Monte Carlo
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
274
dcterms.bibliographicCitation.doi
10.1038/s41467-022-35534-5
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
14
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-022-35534-5
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723