dc.contributor.author
Kerkhoff, Yannic
dc.contributor.author
Azizi, Latifeh
dc.contributor.author
Mykuliak, Vasyl V.
dc.contributor.author
Hytönen, Vesa P.
dc.contributor.author
Block, Stephan
dc.date.accessioned
2023-04-12T05:42:43Z
dc.date.available
2023-04-12T05:42:43Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37813
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37526
dc.description.abstract
Several techniques have been established to quantify the mechanicals of single molecules. However, most of them show only limited capabilities of parallelizing the measurement by performing many individual measurements simultaneously. Herein, a microfluidics-based single-molecule force spectroscopy method, which achieves sub-nanometer spatial resolution and sub-piconewton sensitivity and is capable of simultaneously quantifying hundreds of single-molecule targets in parallel, is presented. It relies on a combination of total internal reflection microscopy and microfluidics, in which monodisperse fluorescent beads are immobilized on the bottom of a microfluidic channel by macromolecular linkers. Application of a flow generates a well-defined shear force acting on the beads, whereas the nanomechanical linker response is quantified based on the force-induced displacement of individual beads. To handle the high amount of data generated, a cluster analysis which is capable of a semi-automatic identification of measurement artifacts and molecular populations is implemented. The method is validated by probing the mechanical response polyethylene glycol linkers and binding strength of biotin–NeutrAvidin complexes. Two energy barriers (at 3 and 5.7 Å, respectively) in the biotin–NeutrAvidin interaction are resolved and the unfolding behavior of talin's rod domain R3 in the force range between 1 to ≈10 pN is probed.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
high-throughput measurements
en
dc.subject
microfluidics
en
dc.subject
single-molecule force spectroscopy
en
dc.subject
total internal reflection fluorescence (TIRF) microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Microfluidics-Based Force Spectroscopy Enables High-Throughput Force Experiments with Sub-Nanometer Resolution and Sub-Piconewton Sensitivity
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
2206713
dcterms.bibliographicCitation.doi
10.1002/smll.202206713
dcterms.bibliographicCitation.journaltitle
Small
dcterms.bibliographicCitation.number
14
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
https://doi.org/10.1002/smll.202206713
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.funding
DEAL Wiley
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1613-6829