dc.contributor.author
Botsyun, Svetlana
dc.contributor.author
Ehlers, Todd A.
dc.contributor.author
Koptev, Alexander
dc.contributor.author
Böhme, Madelaine
dc.contributor.author
Methner, Katharina
dc.contributor.author
Risi, Camille
dc.contributor.author
Stepanek, Christian
dc.contributor.author
Mutz, Sebastian G.
dc.contributor.author
Werner, Martin
dc.contributor.author
Boateng, Daniel
dc.date.accessioned
2023-01-26T13:36:12Z
dc.date.available
2023-01-26T13:36:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37774
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37487
dc.description.abstract
The Middle Miocene (15.99–11.65 Ma) of Europe witnessed major climatic, environmental, and vegetational change, yet we are lacking detailed reconstructions of Middle Miocene temperature and precipitation patterns over Europe. Here, we use a high-resolution (∼0.75°) isotope-enabled general circulation model (ECHAM5-wiso) with time-specific boundary conditions to investigate changes in temperature, precipitation, and δ18O in precipitation (δ18Op). Experiments were designed with variable elevation configurations of the European Alps and different atmospheric CO2 levels to examine the influence of Alpine elevation and global climate forcing on regional climate and δ18Op patterns. Modeling results are in agreement with available paleobotanical temperature data and with low-resolution Middle Miocene experiments of the Miocene Model Intercomparison Project (MioMIP1). However, simulated precipitation rates are 300–500 mm/yr lower in the Middle Miocene than for pre-industrial times for central Europe. This result is consistent with precipitation estimates from herpetological fossil assemblages, but contradicts precipitation estimates from paleobotanical data. We attribute the Middle Miocene precipitation change in Europe to shifts in large-scale pressure patterns in the North Atlantic and over Europe and associated changes in wind direction and humidity. We suggest that global climate forcing contributed to a maximum δ18Op change of ∼2‰ over high elevation (Alps) and ∼1‰ over low elevation regions. In contrast, we observe a maximum modeled δ18Op decrease of 8‰ across the Alpine orogen due to Alpine topography. However, the elevation-δ18Op lapse rate shallows in the Middle Miocene, leading to a possible underestimation of paleotopography when using present-day δ18Op—elevation relationships data for stable isotope paleoaltimetry studies.
en
dc.format.extent
30 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
Middle Miocene
en
dc.subject
climate modeling
en
dc.subject
stable water isotopes
en
dc.subject
precipitation
en
dc.subject
paleoclimate
en
dc.subject
paleoelevation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
dc.title
Middle Miocene Climate and Stable Oxygen Isotopes in Europe Based on Numerical Modeling
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2022PA004442
dcterms.bibliographicCitation.doi
10.1029/2022PA004442
dcterms.bibliographicCitation.journaltitle
Paleoceanography and Paleoclimatology
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.volume
37
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2022PA004442
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Meteorologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2572-4525
refubium.resourceType.provider
WoS-Alert