dc.contributor.author
Fedoseeva, Yuliya V.
dc.contributor.author
Shlyakhova, Elena V.
dc.contributor.author
Vorfolomeeva, Anna A.
dc.contributor.author
Grebenkina, Mariya A.
dc.contributor.author
Sysoev, Vitalii I.
dc.contributor.author
Stolyarova, Svetlana G.
dc.contributor.author
Maksimovskiy, Evgeny A.
dc.contributor.author
Makarova, Anna A.
dc.contributor.author
Okotrub, Alexander V.
dc.contributor.author
Bulusheva, Lyubov G.
dc.date.accessioned
2023-01-26T11:22:00Z
dc.date.available
2023-01-26T11:22:00Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37761
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37474
dc.description.abstract
Structural imperfections, heteroatom dopants, and the interconnected pore structure of carbon materials have a huge impact on their electrochemical performance in lithium-ion and sodium-ion batteries due to the specific ion transport and the dominant storage mechanism at surface defect sites. In this work, mesopore-enriched nitrogen-doped carbon (NC) materials were produced with template-assisted chemical vapor deposition using calcium tartrate as the template precursor and acetonitrile as the carbon and nitrogen source. The chemical states of nitrogen, the volume of mesopores, and the specific surface areas of the materials were regulated by adjusting the synthesis temperature. The electrochemical testing of NC materials synthesized at 650, 750, and 850 °C revealed the best performance of the NC-650 sample, which was able to deliver 182 mA·h·g−1 in sodium-ion batteries and 1158 mA·h·g−1 in lithium-ion batteries at a current density of 0.05 A·g−1. Our study shows the role of defect sites, including carbon monovacancies and nitrogen-terminated vacancies, in the binding and accumulation of sodium. The results provide a strategy for managing the carbon structure and nitrogen states to achieve a high alkali-metal-ion storage capacity and long cycling stability, thereby facilitating the electrochemical application of NC materials.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
nitrogen-doped carbon
en
dc.subject
sodium-ion batteries
en
dc.subject
lithium-ion batteries
en
dc.subject
DFT calculations
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Tuning Nitrogen-Doped Carbon Electrodes via Synthesis Temperature Adjustment to Improve Sodium- and Lithium-Ion Storage
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
45
dcterms.bibliographicCitation.doi
10.3390/batteries9010045
dcterms.bibliographicCitation.journaltitle
Batteries
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.originalpublishername
MDPI
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.3390/batteries9010045
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2313-0105