dc.contributor.author
Jenkins, Sarah
dc.contributor.author
Rózsa, Levente
dc.contributor.author
Atxitia, Unai
dc.contributor.author
Evans, Richard F. L.
dc.contributor.author
Novoselov, Kostya S.
dc.contributor.author
Santos, Elton J. G.
dc.date.accessioned
2023-01-19T13:04:22Z
dc.date.available
2023-01-19T13:04:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37716
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37431
dc.description.abstract
The Mermin-Wagner theorem states that long-range magnetic order does not exist in one- (1D) or two-dimensional (2D) isotropic magnets with short-ranged interactions. Here we show that in finite-size 2D van der Waals magnets typically found in lab setups (within millimetres), short-range interactions can be large enough to allow the stabilisation of magnetic order at finite temperatures without any magnetic anisotropy. We demonstrate that magnetic ordering can be created in 2D flakes independent of the lattice symmetry due to the intrinsic nature of the spin exchange interactions and finite-size effects. Surprisingly we find that the crossover temperature, where the intrinsic magnetisation changes from superparamagnetic to a completely disordered paramagnetic regime, is weakly dependent on the system length, requiring giant sizes (e.g., of the order of the observable universe ~ 1026 m) to observe the vanishing of the magnetic order as expected from the Mermin-Wagner theorem. Our findings indicate exchange interactions as the main ingredient for 2D magnetism.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Materials for devices
en
dc.subject
Materials science
en
dc.subject
Mermin-Wagner limit
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Breaking through the Mermin-Wagner limit in 2D van der Waals magnets
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
6917
dcterms.bibliographicCitation.doi
10.1038/s41467-022-34389-0
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-022-34389-0
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert