dc.contributor.author
Silapetere, Arita
dc.contributor.author
Hwang, Songhwan
dc.contributor.author
Hontani, Yusaku
dc.contributor.author
Fernandez Lahore, Rodrigo G.
dc.contributor.author
Balke, Jens
dc.contributor.author
Velazquez Escobar, Francisco
dc.contributor.author
Tros, Martijn
dc.contributor.author
Konold, Patrick E.
dc.contributor.author
Matis, Rainer
dc.contributor.author
Alexiev, Ulrike
dc.date.accessioned
2023-01-19T08:48:50Z
dc.date.available
2023-01-19T08:48:50Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37703
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37418
dc.description.abstract
Rhodopsins had long been considered non-fluorescent until a peculiar voltage-sensitive fluorescence was reported for archaerhodopsin-3 (Arch3) derivatives. These proteins named QuasArs have been used for imaging membrane voltage changes in cell cultures and small animals. However due to the low fluorescence intensity, these constructs require use of much higher light intensity than other optogenetic tools. To develop the next generation of sensors, it is indispensable to first understand the molecular basis of the fluorescence and its modulation by the membrane voltage. Based on spectroscopic studies of fluorescent Arch3 derivatives, we propose a unique photo-reaction scheme with extended excited-state lifetimes and inefficient photoisomerization. Molecular dynamics simulations of Arch3, of the Arch3 fluorescent derivative Archon1, and of several its mutants have revealed different voltage-dependent changes of the hydrogen-bonding networks including the protonated retinal Schiff-base and adjacent residues. Experimental observations suggest that under negative voltage, these changes modulate retinal Schiff base deprotonation and promote a decrease in the populations of fluorescent species. Finally, we identified molecular constraints that further improve fluorescence quantum yield and voltage sensitivity.
en
dc.format.extent
20 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Biological fluorescence
en
dc.subject
Biophysical chemistry
en
dc.subject
Membrane potential
en
dc.subject
Molecular biophysics
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
5501
dcterms.bibliographicCitation.doi
10.1038/s41467-022-33084-4
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-022-33084-4
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert