dc.contributor.author
Wrathall, Solomon L. D.
dc.contributor.author
Procacci, Barbara
dc.contributor.author
Horch, Marius
dc.contributor.author
Saxton, Emily
dc.contributor.author
Furlan, Chris
dc.contributor.author
Walton, Julia
dc.contributor.author
Rippers, Yvonne
dc.contributor.author
Blaza, James N.
dc.contributor.author
Greetham, Gregory M.
dc.contributor.author
Towrie, Michael
dc.date.accessioned
2023-01-16T12:44:13Z
dc.date.available
2023-01-16T12:44:13Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37617
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37332
dc.description.abstract
Ultrafast two-dimensional infrared (2D-IR) spectroscopy of Escherichia coli Hyd-1 (EcHyd-1) reveals the structural and dynamic influence of the protein scaffold on the Fe(CO)(CN)2 unit of the active site. Measurements on as-isolated EcHyd-1 probed a mixture of active site states including two, which we assign to Nir-SI/II, that have not been previously observed in the E. coli enzyme. Explicit assignment of carbonyl (CO) and cyanide (CN) stretching bands to each state is enabled by 2D-IR. Energies of vibrational levels up to and including two-quantum vibrationally excited states of the CO and CN modes have been determined along with the associated vibrational relaxation dynamics. The carbonyl stretching mode potential is well described by a Morse function and couples weakly to the cyanide stretching vibrations. In contrast, the two CN stretching modes exhibit extremely strong coupling, leading to the observation of formally forbidden vibrational transitions in the 2D-IR spectra. We show that the vibrational relaxation times and structural dynamics of the CO and CN ligand stretching modes of the enzyme active site differ markedly from those of a model compound K[CpFe(CO)(CN)2] in aqueous solution and conclude that the protein scaffold creates a unique biomolecular environment for the NiFe site that cannot be represented by analogy to simple models of solvation.
en
dc.format.extent
17 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
ultrafast 2D-IR spectroscopy
en
dc.subject
Escherichia coli
en
dc.subject
protein scaffold
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Ultrafast 2D-IR spectroscopy of [NiFe] hydrogenase from E. coli reveals the role of the protein scaffold in controlling the active site environment
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
24767
dcterms.bibliographicCitation.doi
10.1039/D2CP04188J
dcterms.bibliographicCitation.journaltitle
Physical Chemistry Chemical Physics
dcterms.bibliographicCitation.number
40
dcterms.bibliographicCitation.pageend
24783
dcterms.bibliographicCitation.volume
24
dcterms.bibliographicCitation.url
https://doi.org/10.1039/D2CP04188J
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1463-9084
refubium.resourceType.provider
WoS-Alert