dc.contributor.author
Wilm, Frauke
dc.contributor.author
Fragoso, Marco
dc.contributor.author
Marzahl, Christian
dc.contributor.author
Qiu, Jingna
dc.contributor.author
Puget, Chloé
dc.contributor.author
Diehl, Laura
dc.contributor.author
Bertram, Christof A.
dc.contributor.author
Klopfleisch, Robert
dc.contributor.author
Maier, Andreas
dc.contributor.author
Breininger, Katharina
dc.date.accessioned
2023-01-16T08:03:56Z
dc.date.available
2023-01-16T08:03:56Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37594
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37309
dc.description.abstract
Due to morphological similarities, the differentiation of histologic sections of cutaneous tumors into individual subtypes can be challenging. Recently, deep learning-based approaches have proven their potential for supporting pathologists in this regard. However, many of these supervised algorithms require a large amount of annotated data for robust development. We present a publicly available dataset of 350 whole slide images of seven different canine cutaneous tumors complemented by 12,424 polygon annotations for 13 histologic classes, including seven cutaneous tumor subtypes. In inter-rater experiments, we show a high consistency of the provided labels, especially for tumor annotations. We further validate the dataset by training a deep neural network for the task of tissue segmentation and tumor subtype classification. We achieve a class-averaged Jaccard coefficient of 0.7047, and 0.9044 for tumor in particular. For classification, we achieve a slide-level accuracy of 0.9857. Since canine cutaneous tumors possess various histologic homologies to human tumors the added value of this dataset is not limited to veterinary pathology but extends to more general fields of application.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Computational science
en
dc.subject
Data publication and archiving
en
dc.subject
Scientific data
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::630 Landwirtschaft::630 Landwirtschaft und verwandte Bereiche
dc.title
Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
588
dcterms.bibliographicCitation.doi
10.1038/s41597-022-01692-w
dcterms.bibliographicCitation.journaltitle
Scientific Data
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41597-022-01692-w
refubium.affiliation
Veterinärmedizin
refubium.affiliation.other
Institut für Tierpathologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2052-4463
refubium.resourceType.provider
WoS-Alert