dc.contributor.author
Beck, Matthias
dc.contributor.author
Janssen, Ellinor
dc.contributor.author
Jochemko, Katharina
dc.date.accessioned
2023-10-24T07:26:51Z
dc.date.available
2023-10-24T07:26:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/37548
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-37262
dc.description.abstract
The Ehrhart polynomial ehrP(n) of a lattice polytope P gives the number of integer lattice points in the n-th dilate of P for all integers n≥0. The degree of P is defined as the degree of its h∗-polynomial, a particular transformation of the Ehrhart polynomial with many useful properties which serves as an important tool for classification questions in Ehrhart theory. A zonotope is the Minkowski (pointwise) sum of line segments. We classify all Ehrhart polynomials of lattice zonotopes of degree 2 thereby complementing results of Scott (Bull Aust Math Soc 15(3), 395–399, 1976), Treutlein (J Combin Theory Ser A 117(3), 354–360, 2010), and Henk and Tagami (Eur J Combin 30(1), 70–83, 2009). Our proof is constructive: by considering solid-angles and the lattice width, we provide a characterization of all 3-dimensional zonotopes of degree 2.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Lattice polytopes
en
dc.subject
Ehrhart polynomials
en
dc.subject
Classification of polynomials
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Lattice zonotopes of degree 2
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s13366-022-00665-9
dcterms.bibliographicCitation.journaltitle
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1011
dcterms.bibliographicCitation.pageend
1025
dcterms.bibliographicCitation.volume
64
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s13366-022-00665-9
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2191-0383
refubium.resourceType.provider
WoS-Alert